IT 1204
Section 4.0

CPU Organization and Instruction
Set Architecture (ISA)

'
© 2009, University of Colombo School of Computing
UCSC

Hardware Components of a Typical
Computer

_ Central
Peripheral — Processing [~ »| Memory

Devices [Unit (CPU) [

Buses allow components to pass data to each other

© 2009, University of Colombo School of Computing @

Hardware Components of a Typical
Computer - CPU

,| Central

Peripheral Processing

Devices +—— Unit (CPU) [«—— viemory

Central Processing Unit (CPU)
« Performs the basic operations

« Consists of two parts:
— Arithmetic / Logic Unit (ALU) - data manipulation

— Control Unit - coordinate machine’s activities

© 2009, University of Colombo School of Computing @

Central Processing Unit (CPU)

* Fetches, decodes and executes program
instructions

* Two principal parts of the CPU
— Arithmetic-Logic Unit (ALU)
« Connected to registers and memory by a
data bus
* All three comprise the Datapath
— Control unit

« Sends signals to CPU components to perform
sequenced operations

'
© 2009, University of Colombo School of Computing
UCSC

CPU: Registers, ALU and Control Unit

* Registers
— Hold data that can be readily accessed by the CPU
— Implemented using D flip-flops
» A 32-bit register requires 32 D flip-flops

* Arithmetic-logic unit (ALU)
— Carries out logical and arithmetic operations
— Often affects the status register (e.g., overflow, carry)
— Operations are controlled by the control unit

e Control unit (CU)
— Policeman or traffic manager

— Determines which actions to carry out according to the values in
a program counter register and a status register

'
© 2009, University of Colombo School of Computing 5
UCSC

Hardware Components of a Typical
Computer - Memory

_ .| Central
Per|p_heral Processing | Memory
Devices |« Unit (CPU) «—

Main Memory
» Holds programs and data

 Stores bits in fixed-sized chunks: “word” (8, 16, 32 or
64 bits)

« Each word has a unique address

« The words can be accessed in any order 2
random-access memory or “RAM”

© 2009, University of Colombo School of Computing @

Memory
« Consists of a linear array of addressable storage cells

>

Address <€ 8-bit > Address <€ 16-bit
1

2
3
4

> bW

(a) (b)
A memory address is represented by an unsigned
integer
- Can be byte-addressable or word-addressable
— Byte-addressable: each byte has a unique address

— Word-addressable: a word (e.g., 4 bytes) has a unique
address

'
© 2009, University of Colombo School of Computing 7
UCSC

Memory: Example

A memory word size of a machine is 16 bits
 A4MB x 16 RAM chip gives us 4 megabytes of 16-bit
memory locations

— 4MB = 22 * 220 = 222 = 4 194,304 unique locations (each
location contains a 16-bit word)
— Memory locations range from 0 to 4,194,303 in unsigned
integers
« 2N addressable units of memory require N bits to
address each location

— Thus, the memory bus of this system requires at least 22
address lines

— The address lines “count” from 0 to 222 -1 in binary

'
© 2009, University of Colombo School of Computing 8
UCSC

Hardware Components of a Typical
Computer — Peripheral Devices that
Communicate with the Outside World

_ Central
Perlp_heral — > Processing |~ ’| Memory
Devices |« Unit (CPU) «—

* Input/Output (1/0)
— Input: keyboard, mouse, microphone, scanner,
sensors (camera, infra-red), punch-cards
— Output: video, printer, audio speakers, etc

« Communication
— modem, ethernet card

© 2009, University of Colombo School of Computing @

Hardware Components of a Typical
Computer — Peripheral Devices that Store
Data Long Term

- Secondary (mass) storage

« Stores information for long periods of
time as files

— Examples: hard drive, floppy disk, tape, CD-
ROM (Compact Disk Read-Only Memory), flash
drive, DVD (Digital Video/Versatile Disk)

uese

© 2009, University of Colombo School of Computing @ 10

Hardware Components of a Typical
Computer — Buses

Peripheral — PCentra}
rocessing

Devices [Unit (CPU) [+—— Memory

Buses

« Used to share data between system components
inside and outside the CPU

« Set of wires (lines) that
— act as a shared path
— allow parallel movement of bits

© 2009, University of Colombo School of Computing @ 11

Typical Bus Transactions

Sending an address (for performing a read or write)

Transferring data from memory to register and vice
versa

Transferring data for I/O reads and writes from
peripheral devices

'
© 2009, University of Colombo School of Computing
UCSC

12

Buses

 Physically a bus is a group of

T
L

conductors that allows all the

bits in a binary word to be

copied from a source component
to a destination component

. Buses move binary values inside Y

the CPU between registers and
other components

» Buses are also used outside the CPU, to copy values
between the CPU registers and main memory, and
between the CPU registers and the 1/O sub-system

© 2009, University of Colombo School of Computing @

13

Types of Buses: Source and Destination

 Point-to-point: connects
two specific components Sarial

Port

* Multi-point: a shared
resource that connects
several components

— access toitis
controlled through

protocols, which are \ T
built into the hardware

hlodam

Controd
Lnil

_—

nnnnnnnnnn

rrrrrrrrrrr

© 2009, University of Colombo School of Computing
UCSC

14

Types of Buses: Contents
» Data bus: conveys bits from one device to another

* Control bus: determines the direction of data flow and when
each device can access the bus

 Address bus: determines the location of the source
or destination of the data

Power

Address Bus
E == | Data Bus Mait
M D A A Control Bus Memory
A y

YYY YYY
/0 110
Device Device

1/0O Subsystem

'
© 2009, University of Colombo School of Computing 15
UCSC

Clock

* Every computer contains at least one clock that
synchronizes the activities of its components

— A fixed number of clock cycles are required to carry out each
data movement or computational operation

— The clock frequency determines the speed of all operations
« Measured in megaHertz or gigaHertz

* Generally the term clock refers to the CPU (master)
clock
— Buses can have their own clocks which are usually slower

* Most machines are synchronous
— Controlled by a master clock signal
— Registers must wait for the clock to tick before loading new data

© 2009, University of Colombo School of Computing 16
UCSC

Clock Speed (I)

* Clock cycle time is the reciprocal of clock
frequency

— Example, an 800 MHz clock has a cycle time of 1.25 ns
« 1/800,000,000 = 0.00000000125 =1.25 *10°

» Clock-speed # CPU-performance

— The CPU time required to run a program is given by the
general performance equation:

seconds instructions avg. cycles seconds

CPU Time = = X = . X
program program instruction cycle

© 2009, University of Colombo School of Computing @ 17

Clock Speed (ll)

* Therefore, we can improve CPU throughput
when we reduce
— the number of instructions in a program
— the number of cycles per instruction
— the number of nanoseconds per clock cycle

* But, in general
— Multiplication takes longer than addition

— Floating point operations require more cycles than
iInteger operations

— Accessing memory takes longer than accessing
registers

'
© 2009, University of Colombo School of Computing
UCSC

18

Features of Computers: Speed and
Reliability

« Speed
— CPU speed

— System-clock / Bus speed
— Memory-access speed

— Peripheral device speed

* Reliability

UCSC

© 2009, University of Colombo School of Computing @

19

CPU Speed

 CPU clock speed: in cycles per second ("hertz")
— Example: 700MHz Pentium Ill, 3GHz Pentium IV

 but different CPU designs do different amounts of
work in one clock cycle

- Other measures of speed
— “flops” (floating-point operations per second)

— “mips” (million instructions per second)

'
© 2009, University of Colombo School of Computing
UCSC

20

System-Clock / Bus Speed

« Speed of communication between CPU, memory
and peripheral devices

 Depends on main board design
— Examples:

 Intel 1.50GHz Pentium-4 works on a 400MHz bus
speed

'
© 2009, University of Colombo School of Computing 21
UCSC

Memory-Access Speed

- RAM

— about 60ns (1 nanosecond = a billionth of a second), and
getting faster

— may be rated with respect to “bus speed” (e.g., PC-100)

« Cache memory

— faster than main memory (about 20ns access speed), but
more expensive

— contains data which the CPU is likely to use next

'
© 2009, University of Colombo School of Computing 22
UCSC

Peripheral Device Speed

 Mass storage
— Examples:

 3.5in 1.4MB floppy disk: about 200kb/sec at 300 rpm
(revolutions per minute)

« Hard drive: up to 160 GB of storage, average seek
time about 6 milliseconds, and 7,200 rpm

« Communications

— Examples: modems at 56 kilobits per second, and
network cards at 10 or 100 megabits per second

- 1/0
— Examples: ISA, PCI, IDE, SCSI, ATA, USB, efc....

'
© 2009, University of Colombo School of Computing 23
UCSC

Cache Memory and Virtual Memory

« Cache memory — random access memory that a

processor can access more quickly than regular
RAM

 Virtual memory — an “extension” of RAM using the
hard disk

— allows the computer to behave as though it has more
memory than what is physically available

'
© 2009, University of Colombo School of Computing 24
UCSC

Interrupts and Exceptions

Events that alter the normal execution of a program

Exceptions are triggered within the processor
— Arithmetic errors, overflow or underflow

— Invalid instructions

— User-defined break points

Interrupts are triggered outside the processor
— 1/O requests

Each type of interrupt or exception is associated with a
procedure that directs the actions of the CPU

'
© 2009, University of Colombo School of Computing 25
UCSC

Fetch-decode-execute Cycle

A computer runs programs by performing

fetch-decode-execute cycles

fetch next instruction from
memory (word pointed to
by PC) and place in IR

decode instruction in the IR
to determine type

execute instruction

go to the next instruction
(next word in memory)

Example: instruction word

at mem[PC] is Ox20A9FFFD

——/

001000 00101 TTT1111111111101
Opcode 8 is “add immediate”,

source reg is $5, “target” reg
is reg $9, add amount is -3

Send reg $5 and -3 to ALU,
add them, put result in reg $9

PC=PC+ 4

© 2009, University of Colombo School of Computing @ 26

Accessing Memory ()

« Every memory access needs an address word to be
sent from CPU to memory

— Address range is 0x00000000 to OxFFFFFFFF
 about 4 billion bytes of addressable space

- Addresses output by the CPU go to the Memory
Address Register (MAR)

— During a fetch access, the PC value is copied to MAR

— During a load/store access, a “computed address” from
the ALU is copied to MAR

-
© 2009, University of Colombo School of Computing 27
UCSC

Accessing Memory (ll)

 Why compute load/store addresses?

— 32(instruction bits) — 6(opcode bits) = 26(available
bits)
— insufficient to hold a full memory address

« Solution: register based addressing

— use 26-bits to specify a base address GPR, a target
GPR, plus a 16-bit signed offset

— ALU computes memory reference address “on the fly”
as: MAR = base GPR + offset

— target GPR receives/supplies memory data

'
© 2009, University of Colombo School of Computing
UCSC

28

Memory Segments

Memory is organized into segments, each with its own

purpose
0x00000000 reserved for OS
0x00400000 text segment user’s code
0x10000000 data segment free space,

—emor grows and

y (hea shrinks as
p)
addresses stack /data
stack segment segments

0x80000000 change

reserved for the

OXFFFFFFFF Operating System (OS)

kernel code
and data

D -

Text Segment

Starts at memory address 0x00400000
— runs up to address OxOFFFFFFF

Contains user’s executable program code (often called
the code segment)

PC register value is a CPU “reference” into this memory
segment

'
© 2009, University of Colombo School of Computing 30
UCSC

Data Segment

« Starts at memory address 0x10000000
— expands upwards towards stack

« Contains program’s static data, i.e., data and variables
whose location in memory is fixed (and known to the
assembler)

InC In Java

global variables | public, static
string constants | objects

© 2009, University of Colombo School of Computing @

Stack Segment

Starts at memory address 0x7FFFFFFF

— grows in the direction of decreasing memory
addresses (i.e., towards the data segment)

Contains system stack

Used for temporary storage of:
— local variables of functions

— function parameter values

— return addresses of functions
— saved register values

UCSC

© 2009, University of Colombo School of Computing

32

Heap

Technically part of data segment
— located at end of data segment, after all static data

Empty at start of program execution

Dynamically allocated memory is taken from heap
for program to use

Freed memory (by user or garbage collection) is
returned to heap

'
© 2009, University of Colombo School of Computing 33
UCSC

Block Diagram of the System

A Von Neuman Control || CENTRAL
i : PROCESSING
Machine ynlt . UNIT
Arithmeti
Cc
Logic BUS
INPUT | OUTPUT
1001100101001 0010011100011
MEMORY

© 2009, University of Colombo School of Computing @ 34

Arithmetic Logic Unit
.+ ALU

- The part of a computer that performs all arithmetic
computations, such as addition and multiplication, and
all comparison operations

- Atypical schematic symbol for an ALU: A & B are
operands; R is the output; F is the input from the
Control Unit; D is an output status

'
© 2009, University of Colombo School of Computing 35
UCSC

Arithmetic Logic Unit...

The component where data is held temporarily
Calculations occur here

It kKnows how to perform operations such as ADD,
SUB, LOAD, STORE, SHIFT

It kKnows the commands that make up the
machine language of the CPU

It is the calculator

'
© 2009, University of Colombo School of Computing 36
UCSC

Control Unit

* A computer’s control unit keeps things synchronized

— Makes sure that the correct components are activated as
the components are needed

— Sends bits down control lines to trigger events

* E.g., when Add is performed, the control signal tells
the ALU to Add

— How do these control lines become asserted?

« Hardwired control: controllers implement this
program using digital logic components

* Microprogrammed control: a small program is
placed into read-only memory in the microcontroller

'
© 2009, University of Colombo School of Computing 37
UCSC

Control Unit: Hardwired Control

Physically connect all of the control lines to the actual

machine instruction

— Instructions are divided into fields and different bits are
combined with various digital logic components (which

drive the control line)

The control unit is implemented
using hardware

— The digital circuit uses inputs to =
generate the control signal to [—*

Input from clock

>

Instruction Register

v

Instruction Decoder

YYyvyvy Y

Input from system bus
{such as interrupts)

drive various components

Control Unit
(Combinational circuit)

———
l——
<
4'—
l——
l——
l——

Advantage: very fast

Disadvantage: instruction set
and digital logic are locked
ucse

(These sig

© 2009, University of Colombo School of Computing

Wl

L T
Control Signals

e
the bus and the ALL.)

nals go to registe

=

nput from statu
f

m tus/
lag registers

rs,

Control Unit: Microprogrammed Control

Microprogram: software stored in the CPU control unit

Converts machine instructions (binary) into control
signals

One subroutine for each ¢

machine instruction s { 3 I

Advantage: very flexible H I j

Disadvantage: additional > T e Y }f::;z::;s;“:;;

layer of interpretation I H i
—

Control Signals

© 2009, University of Colombo School of Computing 39
UCSC

Registers

“A register is a single, permanent storage location
within the CPU used for a PARTICULAR, defined
purpose”

“A register is used to hold a binary value
temporarily for storage, for manipulation, and/or for
simple calculations”

Registers have special addresses

'
© 2009, University of Colombo School of Computing 40
UCSC

Von Neuman Machine Model

Main Memory

Input Output
Data and Data

. CPU Cycle
Instructions

Fetch an instruction
- from the memory cell
where the PC points

-~

N

10110111 b1 s l

Decode the instruction
PC - 01101001 ALU
00110100 Execute the
l T instruction
01111101 Control
H.lg?aogo Unit — Increment the PC
Counter /
CPU

© 2009, University of Colombo School of Computing 41
UCSC

Registers

CPU

Arithmetic/ Logic
Unit

sng

TI1T7T

-

Input devices
Output devices
Main Memory

Secondary
Storage

Registers are used to hold the data immediately applicable to the operation at

hand;

Main memory is used to hold the data that will be needed in the near future

Secondary storage is used to hold data that will be likely not be needed in the

near future

© 2009, University of Colombo School of Computing

D -

Example: Machine Architecture

Consider a machine with
256 byte Main Memory: 00-FF
16 General Purpose Registers: 0-F
16 Bit Instruction
8 Bit Integer Format (2's Complement)
8 Bit Floating Point Format
« 1 Sign Bit
« 3 Exponent Bits
« 4 Bit Mantissa
16 Instructions: 1-F

© 2009, University of Colombo School of Computing

00
01
02
03
04

ff

0001 0001

0011 0000

0001 0010

0100 0000

0011 0001

0100 0000

0100 0000

D -

Example: Addition Operation

1
B(01101101

R,

5

Load the first number from memory cell A into register R,
Load the second number from memory cell B into register R,
Adding the numbers in these two registers and put the result in register R,

Store the result in R, into the memory call X

) © 2009, University of Colombo School of Computing @ 44
UCSC

Block Diagram of the CPU

CPU - Central
Processing Unit

P

ALI

decoder

rezisters

PC

MAR - Memory Address
MAR Register

IR - Instruction Register

MDR - Memory Data
Register

/g
\W MDE

()

PC - Program Counter

ALU - Arithmetic Logic
Unit

© 2009, University of Colombo School of Computing @ 45

Instruction Fetch

The address in the Program Counter is placed in
MAR

The addressed instruction is read from memory

(through the MDR) and placed into the Instruction
Register

'
© 2009, University of Colombo School of Computing 46
UCSC

Instruction Execute

 The Instruction Decoder examines the instruction in the
Instruction Register and sends appropriate signals to
other parts of the CPU to carry out the actions specified
by the instruction. This may include:

- Reading operands from memory or registers into the
Arithmetic Logic Unit,

- Enabling the circuits of the Arithmetic Logic Unit to
perform arithmetic or other computations,

- Storing data values into memory or registers,
- Changing the value of the Program Counter

'
© 2009, University of Colombo School of Computing 47
UCSC

The CPU Cycle

The processor endlessly repeats the cycle:

fetch, execute, fetch, execute, fetch, execute,

fetch, execute, fetch, execute, fetch, execute,

fetch, execute, fetch, execute, fetch, execute,
fetch ...

'
© 2009, University of Colombo School of Computing 48
UCSC

Fetch and Execute Cycle

At the beginning of each cycle the CPU presents

the value of the program counter on the address
bus

The CPU then fetches the instruction from main
memory (possibly via a cache and/or a pipeline)
via the data bus into the instruction register

'
© 2009, University of Colombo School of Computing 49
UCSC

Fetch and Execute Cycle

From the instruction register, the data forming the
instruction is decoded and passed to the control unit

It sends a sequence of control signals to the relevant
function units of the CPU to perform the actions
required by the instruction such as reading values from
registers, passing them to the ALU to add them
together and writing the result back to a register

'
© 2009, University of Colombo School of Computing 50
UCSC

Fetch and Execute Cycle

The program counter is then incremented to
address the next instruction and the cycle is repeated

'
© 2009, University of Colombo School of Computing 51
UCSC

Instruction Set Architecture (ISA)

 Instruction sets — definition and features
— Instruction types
— Operand organization
— Number of operands and instruction length
— Addressing
— Instruction execution — pipelining

« Features of two machine instruction sets (CISC and
RISC)

* |nstruction format

'
© 2009, University of Colombo School of Computing 52
UCSC

Instruction Set Architecture (ISA)

 Machine instructions
— Opcodes and operands

* High level languages
— Hide detail of the architecture from the programmer
— Easier to program

 Why learn computer architectures and assembly
language?
— To understand how the computer works
— To write more efficient programs

'
© 2009, University of Colombo School of Computing
UCSC

53

Instruction Set Architecture (ISA)

Instruction sets are differentiated by
 Instructions

— types of instructions

— instruction length and number of operands
 Operands

— type (addresses, numbers, characters) and access mode

— location (CPU or memory)

— organization (stack or register based)

« number of addressable registers

 Memory organization

— byte- or word-addressable
« CPU instruction execution

— with/without pipelining

uese

© 2009, University of Colombo School of Computing

54

Instruction Set Architecture (ISA)

 The instruction set format is critical to the
machine’s architecture

 Performance of instruction set architectures is
measured by

— Main memory space occupied by a program
— Instruction complexity

— Instruction length (in bits)

— Total number of instructions

'
© 2009, University of Colombo School of Computing
UCSC

55

Instruction Set Architecture (ISA)

Instruction types

Operand organization

Number of operands and instruction length
Addressing

Instruction execution — pipelining

'
© 2009, University of Colombo School of Computing
UCSC

56

Instruction Set Architecture (ISA)

An instruction set, or instruction set architecture
(ISA) describes the aspects of a computer architecture
visible to a programmer, including the native data-types,
Instructions, registers, addressing modes, memory
architecture, interrupt and exception handling, and
external I/O (if any)

An ISA includes a specification of the set of all binary
codes (opcodes) that are the native form of commands
implemented by a particular CPU design

The set of opcodes for a particular ISA is also known
as the machine language for the ISA

'
© 2009, University of Colombo School of Computing 57
UCSC

Instruction Set Architecture (ISA)

ISAs commonly implemented in hardware

Alpha AXP (DEC Alpha)

ARM (Acorn RISC Machine) (Advanced RISC Machine now ARM
Ltd)

|A-64 (ltanium)

MIPS

Motorola 68k

PA-RISC (HP Precision Architecture)
IBM POWER

PowerPC

SPARC

SuperH

VAX (Digital Equipment Corporation)

Xx86 (IA-32, Pentium, Athlon) (AMD64, EM64T)

© 2009, University of Colombo School of Computing @ 58
UCSC

Machine Instructions

Data Transfer: transfer data between registers and
memory cells

Arithmetic/Logic Operations: perform addition, AND,
OR, XOR and etc.

Control Operations: control the execution of the
program

© 2009, University of Colombo School of Computing @ 59
UCSC

Data Transfer Instructions

1. L R, A LOAD the register R with the
content of memory cell A

2. LI R ,1 LOAD the register Rwith I (I is
called an immediate number)

3. STR ,A STORE the content of the register R
to the memory cell whose address
IS A

4. LR R1,R2 LOAD the register R, with the
content of the register R,

'
© 2009, University of Colombo School of Computing 60
UCSC

Example: Data Transfer Instructions

Swap the content of two memory cells 30,6, and 40,

30| 01101101

0O(10011010 \

(
/
=

4
R
© 2009, University of Colombo School of Computing 61
UCSC

Example: Data Transfer Instructions

Swap the content of two memory cells 30,6, and 40,

—10011010—
300—140—1—10—1
o| 1862135

|

@1:9

© 2009, University of Colombo School of Computing 62
UCSC

\\

Arithmetic/Logic Instructions (l)

5. ADD RO, R1,R2 ADD the numbers in R; and

R, representing in 2's
complement and place the
result in Ry

6. AFP RO, R1,R2 ADD the numbers in R; and

UCSC

R, representing in floating-
point and place the result in
I:{0

© 2009, University of Colombo School of Computing @

63

Arithmetic/Logic Instructions (l)

Memory
AO| 11100111 = -25
Al| 01101101 = 109

X0(01010100

Registers

D -

Arithmetic/Logic Instructions (ll)

7. OR RO,R1,R2 OR the bit patterns in R, and
R, and place the result in R,

8. AND RO, R1, R2 AND the bit patterns in R; and
R, and place the result in R,

9. XOR RO, R1, R2 XOR the bit patterns in R, and
R, and place the result in Ry

UCSC

© 2009, University of Colombo School of Computing @ 65

Arithmetic/Logic Instructions (ll)

Example: Mask the first 4 bits of
the binary string in memory AO

AO

© 2009, University of Colombo School of Computing

Memory

10011011

00001011

Registers

—
-

66

Arithmetic/Logic Instructions (ll)
Example: Masking

Al| 11011011

AO(10011001 :¥

X0(11011001

Arithmetic/Logic Instructions (lll)

B. RR R,I ROTATE the bit patterns in R
to right I times. Each time
place the bit that started at the
low-order end at the high-

order end
Example RR, 0, 02
Original String 1/0/{1/1/0 |00 |1
AN N
L T
11011000
N
Resulting String o(1(1|0|1)

© 2009, University of Colombo School of Computing @ 68

Control Instructions

E. JMP R,A JUMP the instruction located
in the memory cell A if the bit
pattern in R is equal to the
one in R

F. HALT HALT the execution

'
© 2009, University of Colombo School of Computing 69
UCSC

Example: Control Instructions

© 2009, University of Colombo School of Computing

R, = OA

Yes

.~
<R3 =Ry 2>
No
R, =R,

70

Program Counter Instruction Register

The CPU Cycle

Control/Unit

8 bit

bus Circuits

\

Code Segment

General
Purpose
Registers

NIV

Data Segment

ALU

© 2009, University of Colombo School of Computing

Main Memory

71
ucse

Operand Organization

« Three choices
— Accumulator architecture
— General Purpose Register (GPR) architecture

— Stack architecture

'
© 2009, University of Colombo School of Computing
UCSC

72

Operand Organization — Accumulator

Architecture

« One operand of a binary operation is implicitly in the
accumulator

« Advantage
— Minimizes the internal complexity of the machine
— Allows for very short instructions

« Disadvantage
— Memory traffic is very high
— Programming is cumbersome

© 2009, University of Colombo School of Computing @ 73
UCSC

Operand Organization — General
Purpose Register (GPR) Architecture

« Uses sets of general purpose registers

« Advantage
— Register sets are faster than memory
— Easy for compilers to deal with
— Due to low costs large numbers of these registers
are being added
« Disadvantage

— Results in longer instructions (longer fetch and
decode times)

'
© 2009, University of Colombo School of Computing
UCSC

74

Operand Organization — General
Purpose Register (GPR) Architecture

* Three types
— Memory-memory
* may have two or three operands in memory

 an instruction may perform an operation without
requiring any operand to be in a reqister
— Register-memory
- at least one operand must be in a register and one
IN memory
— Load-store

* requires data to be moved into registers before any

operation is performed

'
© 2009, University of Colombo School of Computing 75
UCSC

Operand Organization — Stack Architecture
« Uses a stack to execute instructions

« Operations:

— PUSH - put a value on
top of the stack

— POP - read top value
and move down the
“stack pointer”

- Example:
— POP
— PUSH 9

N | &

© 2009, University of Colombo School of Computing @ 76

Operand Organization — Stack Architecture

 Instructions implicitly refer to values at the top of
the stack

— data can be accessed only from the top of the
stack, one word at a time

« Advantage
— Good code density

— Simple model for evaluation of expressions

- Disadvantage
— Restricts the sequence of operand processing

— Execution bottleneck (the stack is located in
memory)

'
© 2009, University of Colombo School of Computing 77
UCSC

Operand Organization — Stack Architecture

- Stack architecture requires us to think about arithmetic
expressions in a hew way
— We are used to Infix notation
cEg.,Z=X+Y

— Stack arithmetic requires Postfix notation:
« E.g9.,Z=XY+

* Postfix notation is also know as
Reverse Polish Notation

'
© 2009, University of Colombo School of Computing 78
UCSC

Stack Architecture — Postfix Notation

« Postfix notation doesn’t need parentheses
- E.g.,
— The infix expression Z=(X*Y)+(W*U)
IS the postfix expression Z=XY *WU * +

— Calculating Z=XY*WU *+ ina stack ISA

PUSH X

PUSH Y

MULT Binary operators

PUSH W * pop the two operands on the
PUSH U stack top, and

MULT « push the result on the stack
ADD

POP Z

© 2009, University of Colombo School of Computing @ 79

Number of Operands and Instruction
Length

The number of operands in each instruction affects the
length of the instruction

Instruction length can be
— Fixed — quick to decode but wastes space
— Variable — more complex to decode but saves space

All architectures limit the number of operands allowed
per instruction

— Stack architecture has 0 or 1 explicit operand
— Accumulator architecture has 0 or 1 explicit operand
— GPR architecture has 1, 2 or 3 operands

'
© 2009, University of Colombo School of Computing 80
UCSC

Number of Operands - Example

« Calculating the infix expression Z=X*Y + W* U

One operand
LOAD X
MULT Y
STORE TEMP
LOAD W
MULT U
ADD TEMP
STORE Z

Two operands

LOAD R1,X
MULT R1,Y
LOAD R2,W

MULT R2,U
ADD R1,R2
STORE Z,R1

Three operands

MULT R1,X,Y
MULT R2,W,U
ADD Z,R1,R2

The accumulator is the
destination for the
result of the instruction

instruction

The first operand is often the
destination for the result of the

© 2009, University of Colombo School of Computing

D -

Coding Instruction

High-Order Byte Low-Order Byte
G J N— —
' Y
0(0(1({0(0 |1 (0|0 o/1/1/1/1/1,0]|0
G A J — _
Y Y 'S
LI 4 7C

© 2009, University of Colombo School of Computing

D -

Instruction Formats

Format 1 Register Immediate Value

Format 2 Register Memory Address

Format 3 Register Register Register

Format 4 Unused (zero) Register Register

) © 2009, University of Colombo School of Computing @
UCSC

83

Format 1 Instruction

Format 1 Register Immediate Value
Opcode Instruction Meaning
2 | R, | Load Immediate
A RL R, | Rotate Left
B RR R, | Rotate Right
C SL R, | Shift Left
D SR R, | Shift Right

5]

@

&

© 2009, University of Colombo School of Computing @ 84

Format 1 Instruction

Format 1 Register Immediate Value

I

1. COPY THE BIT PATTERN IN THE LOW-ORDER BYTE
INTO THE SPECIFIED REGISTER , OR

2. SHIFT/ROTATE THE BITS IN THE SPECIFIED
REGISTER THE NUMBER OF PLACES SPECIFIED
IN THE LOW-ORDER BYTE.

&)

d

©
) © 2009, University of Colombo School of Computing @ 85
UCSC

Format 2 Instruction

Format 2 Register Memory Address
Opcode Instruction Meaning
1 L R,A Load from Memory
3 ST R, A Store to Memory
E JMP R, A Conditional Jump

© 2009, University of Colombo School of Computing @

86

Format 2 Instruction
Format 2 Register Memory Address

|

1. Load - Copy the value stored at the Memory Address
into the specified register

2. Store - Copy the value in the specified register to the
Memory Address

3. Jump - Compare the contents of the specified register
and the contents of Register 0. If equal reset the
Program Counter to the Memory Address

h ? © 2009, University of Colombo School of Computing @ 87
UCSC

Format 3 Instruction

Format 3 Register Register Register
HEER
Opcode Instruction Meaning
9 ADD R, R,, R, Load Immediate
6 AFP R, R, R, Rotate Left
7 OR R, R, R, Rotate Right
8 AND R, R, R, Shift Left
9 XOR R,, R, R, Shift Right

UCsSC

© 2009, University of Colombo School of Computing

Format 3 Instruction

Format 3 Register Register Register

Apply the operation to the two values in the registers
specified in the Low-Order byte and store the result in the
register specified in the High-Order byte

? © 2009, University of Colombo School of Computing @ 89
UCSC

Format 4 Instruction

Format 4 Unused (zero) Register Register

Opcode Instruction Meaning
4 LR R, , R, Load Register

-
) © 2009, University of Colombo School of Computing
UCSC

90

Format 4 Instruction

Format 4 Unused (zero) Register Register

Copy the value in the second register specified in the
Low-Order byte to the first register specified in the
Low-Order byte

- © 2009, University of Colombo School of Computing @
UCSC

91

Full Instruction Set

© 2009, University of Colombo School of Computing @

Examples of OpCode

Name Comment Syntax
TRANSFER
MOV Move (copy) MOV Dest,Source
PUSH Push onto stack PUSH Source
POP Pop from stack POP Dest
IN Input IN Dest, Port
OUT Output OUT Port, Source
ARITHMETIC
ADD Add ADD Dest,Source
SUB Subtract SUB Dest,Source
DIV Divide (unsigned) DIV Op
MUL Multiply (unsigned) MUL Op
INC Increment INC Op
DEC Decrement DEC Op
CMP Compare CMP Op1,0p2

5

d

.;.f?“csc

© 2009, University of Colombo School of Computing

@

93

Examples of OpCode

Name Comment Syntax

LOGIC

NEG Negate (two-complement) NEG Op

NOT Invert each bit NOT Op

AND Logical and AND Dest,Source

OR Logical or OR Dest,Source

XOR Logical exclusive or XOR Dest,Source
JUMPS

CALL Call subroutine CALL Proc

JMP Jump JMP Dest

JE Jump if Equal JE Dest

JZ Jump if Zero JZ Dest

RET Return from subroutine |RET

JNE Jump if not Equal JNE Dest

JNZ Jump if not Zero JNZ Dest

ucse

© 2009, University of Colombo School of Computing

@

94

Coding Program: Example

01101101

1001 1001

© 2009, University of Colombo School of Computing

) 10

11
12
13
14
15
16
17

30

40

0001 0001

0011 0000

0001 0010

0100 0000

0011 0001

0100 0000

0011 0010

0011 0000

01101101

1001 1001

D

95

CPU Cycle (Machine Cycle)

CPU Cycle

Fetch an instruction
- from the memory cell
where the PC points

l

Decode the instruction

\ 4

Execute the
instruction

\ 4

— Increment the PC

@ FETCH

() DECODE

@ EXECUTE
Retrieve the next 2, Decode the bit
instruction from pattern in the
memory (as instruction

indicated by the register
program counter)
and then increment

the program counter

< Execute

3. Perform the action
requested by the
instruction in the
instruction register

© 2009, University of Colombo School of Computing

96

Program Execution: Swap Example

@ FETCH
@ DECODE
@ EXECUTE

PC mmmp 10
11
12
13
14
15
16
17

30

40

0001 0001

0011 0000

0001 0010

0100 0000

0011 0001

0100 0000

0011 0010

0011 0000

01101101

1001 1001

© 2009, University of Colombo School of Computing

97

Execute a Program

PC === 10| 0001 0001
‘ FETCH 11| 0011 0000 R1

12| 0001 0010
@ DECODE

13| 0100 0000 R
@ EXECUTE 14| 0011 0001 2

15| 0100 0000

Instruction: i: ::E :g::
0001 0001 0011 0000 R

30| 01101101

40| 10011001

) © 2009, University of Colombo School of Computing
UCSC

Execute a Program

PC ===p 10| 0001 0001

‘ FETCH 11| 0011 0000
12| 00010010

@ DECODE
13| 0100 0000
‘ EXECUTE 14| 0011 0001
15| 01000000 [..
Instruction: 16| 00110010

17| 0011 0000

0001 0001 0011 0000

Operation-code

Register 30| 01101101

Memory address : 40| 1001 1001

uese

© 2009, University of Colombo School of Computing

Execute a Program

PC ===p 10| 0001 0001

‘ FETCH 11| 0011 0000
12| 00010010

@ DECODE
13| 0100 0000
@ EXECUTE 14| 0011 0001
15| oi1000000 | .
- 16| 00110010
Instruction:

17| 0011 0000

0001 0001 0011 0000

Operation-code

Register 30| 01101101

Memory address : 40| 1001 1001

'
© 2009, University of Colombo School of Computing 100
UCSC

Execute a Program

PC ===p 10| 0001 0001

‘ FETCH 11| 0011 0000
12| 00010010

@ DECODE
13| 0100 0000
@ EXECUTE 14| 0011 0001
15| oi1000000 | .
- 16| 00110010
Instruction:

17| 0011 0000

0001 0001 0011 0000

Operation-code

Register 30| 01101101

Memory address : 40| 1001 1001

'
© 2009, University of Colombo School of Computing 101
UCSC

Execute a Program

10| 0001 0001

‘ FETCH 11| 0011 0000
PC =) 15| 00010010

@ DECODE
13| 0100 0000
@ EXECUTE 14| 0011 0001
15| oi1000000 | .
- 16| 00110010
Instruction:

17| 0011 0000

0001 0001 0011 0000

Operation-code

Register 30| 01101101

Memory address : 40| 1001 1001

'
© 2009, University of Colombo School of Computing 102
UCSC

Execute a Program

10| 0001 0001

‘ FETCH 11| 0011 0000
PC =) 15| 00010010

@ DECODE
13| 0100 0000
‘ EXECUTE 14| 0011 0001
15| 01000000 [..
Instruction: 16| 00110010

17| 0011 0000

0001 0010 0100 0000

30| 01101101

40| 10011001

'
© 2009, University of Colombo School of Computing 103
UCSC

Execute a Program

10| 0001 0001

‘ FETCH 11| 0011 0000
PC =) 15| 00010010

@ DECODE
13| 0100 0000
@ EXECUTE 14| 0011 0001
15| 01000000 | .
] 16| 0011 0010
Instruction:

17| 0011 0000

0001 0010 0100 0000

Operation-code

Register 30| 01101101

Memory address : 40| 1001 1001

'
© 2009, University of Colombo School of Computing 104
UCSC

Execute a Program

10| 0001 0001

‘ FETCH 11| 0011 0000
PC =) 15| 00010010

@ DECODE
13| 0100 0000
@ EXECUTE 14| 0011 0001
15| oi1000000 | .
- 16| 00110010
Instruction:

17| 0011 0000

0001 0010 0100 0000

Operation-code

Register 30| 01101101

Memory address : 40| 1001 1001

'
© 2009, University of Colombo School of Computing 105
UCSC

Execute a Program

10| 0001 0001

‘ FETCH 11| 0011 0000
PC =) 15| 00010010

@ DECODE
13| 0100 0000
@ EXECUTE 14| 0011 0001
15| oi1000000 | .
- 16| 00110010
Instruction:

17| 0011 0000

0001 0010 0100 0000

Operation-code

Register 30| 01101101

Memory address : 40| 1001 1001

'
© 2009, University of Colombo School of Computing 106
UCSC

Execute a Program

10| 0001 0001

‘ FETCH 11| 0011 0000
12| 00010010
‘ DECODE

13| 0100 0000
@ EXECUTE PC wmmp 14| 00110001

15| 0100 0000
16| 0011 0010
17| 0011 0000

30| 01101101

40| 10011001

'
© 2009, University of Colombo School of Computing 107
UCSC

Execute a Program

10| 0001 0001

‘ FETCH 11| 0011 0000
12| 00010010

@ DECODE
13| 01000000
@ EXECUTE PC wmmp 14| 00110001
15| 01000000 | ...
. 16| 00110010
Instruction:

17| 0011 0000

0011 0001 0100 0000

30| 01101101

40| 10011001

'
h © 2009, University of Colombo School of Computing 108
UCSC

Execute a Program

10| 0001 0001

‘ FETCH 11| 0011 0000
12| 00010010

@ DECODE
13| 01000000
@ EXECUTE PC wmmp14| 00110001
15| 01000000 | ...
. 16| 00110010
Instruction:

17| 0011 0000

0011 0001 0100 0000

Operation-code

Register 30| 01101101

Memory address : 40| 1001 1001

'
© 2009, University of Colombo School of Computing 109
UCSC

Execute a Program

10| 0001 0001

‘ FETCH 11| 0011 0000
12| 00010010

@ DECODE
13| 01000000
@ EXECUTE PC wmmp14| 00110001
15| 01000000 | ...
. 16| 00110010
Instruction:

17| 0011 0000

0011 0001 0100 0000

Operation-code

Register 30| 01101101

Memory address : 40| 1001 1001

'
© 2009, University of Colombo School of Computing 110
UCSC

Execute a Program

10| 0001 0001

‘ FETCH 11| 0011 0000
12| 00010010

@ DECODE
13| 01000000
@ EXECUTE PC wmmp14| 00110001
15| 0100 0000
. 16| 00110010
Instruction:

17| 0011 0000

0011 0001 0100 0000

Operation-code

Register 30| 01101101

Memory address : 40| 01101101

UCSC

© 2009, University of Colombo School of Computing 111

Execute a Program

10| 0001 0001

‘ FETCH 11| 0011 0000
‘ DECODE 12| 00010010

13| 0100 0000
‘ EXECUTE 14| 0011 0001

15| 0100 0000
PC =) 16| 00110010
17| 0011 0000

30| 01101101

40| 01101101

'
© 2009, University of Colombo School of Computing 112
UCSC

Execute a Program

10| 0001 0001

‘ FETCH 11| 0011 0000
12| 00010010

@ DECODE
13| 0100 0000
@ EXECUTE 14| 0011 0001
15| 01000000 | ...
- PC ===p 16| 00110010
Instruction:

17| 0011 0000

0011 0010 0011 0000

30| 01101101

40| 01101101

'
- © 2009, University of Colombo School of Computing 113
UCSC

Execute a Program

10| 0001 0001
11| 0011 0000
@ FETCH Ry

@ DECODE

13| 0100 0000 R
@ EXECUTE 14| 0011 0001 2
15| 0100 0000

P
Instruction: ¢ _’:: ::ﬂ :z::
0011 0010 0011 0000 R

Operation-code

30| 01101101

Register

Memory address : 40| 01101101

'
© 2009, University of Colombo School of Computing 114
UCSC

Execute a Program

10| 0001 0001

‘ FETCH 11| 0011 0000
12| 00010010

@ DECODE
13| 0100 0000
@ EXECUTE 14| 0011 0001
15| 01000000 | ...
i PC =) 16| 00110010
Instruction:

17| 0011 0000

0011 0010 0011 0000

Operation-code

Register 30| 01101101

Memory address : 40| 01101101

'
© 2009, University of Colombo School of Computing 115
UCSC

Execute a Program

10| 0001 0001

‘ FETCH 11| 0011 0000
12| 00010010

@ DECODE
13| 0100 0000
@ EXECUTE 14| 0011 0001
15| 01000000 | ...
i PC =) 16| 00110010
Instruction:

17| 0011 0000

0011 0010 0011 0000

Operation-code

Register 30| 1001 1001

Memory address : 40| 01101101

'
© 2009, University of Colombo School of Computing 116
UCSC

Coding Program: An Example

30| 10011001

40| 01101101

© 2009, University of Colombo School of Computing

10
11
12
13
14
15

) 16

17

30

40

0001 0001

0011 0000

0001 0010

0100 0000

0011 0001

0100 0000

0011 0010

0011 0000

1001 1001

01101101

@ -

Assembler Code for A:=23, B:=-11;

© 2009, University of Colombo School of Computing @ 118

Machine Code for A:=23, B:=-11;

© 2009, University of Colombo School of Computing @ 119

Assembler Code for C:=A-B;

© 2009, University of Colombo School of Computing @

Machine Code for C:=A-B;

© 2009, University of Colombo School of Computing @

Example Program

PROGRAM Sort;
VAR
A,B,C : INTEGER,;
PROCEDURE Swap (VAR X,Y : INTEGER);
VAR
Temp : INTEGER,;
BEGIN {Swap}
Temp = A;
A :=B;
B = Temp;
END {Swap};
BEGIN {Sort}
C :=A-B;
IF C =0 THEN
Swap (A,B);
END {Sort}.

o

'
© 2009, University of Colombo School of Computing 122
UCSC

Assembler and Machine Code

© 2009, University of Colombo School of Computing @

Code Loaded in Memory

30
3C
48
54

21

17

31

80

21

F5

31

81

11

80

12

81

23

FF

94

23

23

01

52

34

53

12

33

82

11

82

22

80

83

12

20

00

E3

5E

11

80

12

81

31

TF

31

80

12

TF

32

81

FO

00

© 2009, University of Colombo School of Computing

D

124

The CPU Cycle Instruction Register

Program Counter

Cycle Status (illustration only)

\ 8 bit

~
FETCH bus

DECODE
EXECUTE

Circuits

Code Segment

General
Purpose
Registers

Main Memory Data Segment

B2

© 2009, University of Colombo School of Computing @ 125
UCSC

The CPU Cycle

30

FETCH
DECODE
EXECUTE

Main Memory

'
© 2009, University of Colombo School of Computing 126
UCSC

The CPU Cycle
|Control Unit|

30

DECODE
EXECUTE

Main Memory

© 2009, University of Colombo School of Computing @ 127
UCSC

The CPU Cycle

30

DECODE

EXECUTE

Main Memory

uese

© 2009, University of Colombo School of Computing

21

17

D

128

The CPU Cycle

DECODE
EXECUTE

32

Main Memory

© 2009, University of Colombo School of Computing

21

17

D

129

The CPU Cycle
Control Unit

32

21 | 17

FETCH

EXECUTE

Main Memory

'
© 2009, University of Colombo School of Computing 130
UCSC

The CPU Cycle
Control Unit

32

21 | 17

FETCH

DECODE

Main Memory -

'
© 2009, University of Colombo School of Computing 131
UCSC

The CPU Cycle
Control Unit

32 31|17

DECODE
EXECUTE

Main Memory

-
- © 2009, University of Colombo School of Computing 132
UCSC

The CPU Cycle
Control Unit

32 31 | 80

DECODE
EXECUTE

Main Memory

-
h © 2009, University of Colombo School of Computing 133
UCSC

The CPU Cycle
Control Unit

34

31 | 80

DECODE
EXECUTE

Main Memory

'
N © 2009, University of Colombo School of Computing 134
UCSC

The CPU Cycle
Control Unit

FETCH 34 31 | 80

EXECUTE

Main Memory

© 2009, University of Colombo School of Computing
UCSC

FETCH
DECODE

Main Memory

&
UCsc

(o)

The CPU Cycle
Control Unit

34

© 2009, University of Colombo School of Computing

31

30

The CPU Cycle

DECODE
EXECUTE

Main Memory

© 2009, University of Colombo School of Computing @

UCSC

30

137

The CPU Cycle
Control Unit

34

21 | FS

DECODE
EXECUTE

Main Memory

-
h © 2009, University of Colombo School of Computing 138
UCSC

The CPU Cycle

36

21 | FS

DECODE
EXECUTE

Main Memory

'
© 2009, University of Colombo School of Computing 139
UCSC

FETCH

EXECUTE

Main Memory
&)

The CPU Cycle

K5

The CPU Cycle

FETCH
DECODE

Main Memory

e
[l

=
UCsSC

&

© 2009, University of Colombo School of Computing

K5

The CPU Cycle
Control Unit

36

31 | F5

DECODE
EXECUTE

Main Memory

'
- © 2009, University of Colombo School of Computing 142
UCSC

The CPU Cycle
Control Unit

36 31 | 81

DECODE
EXECUTE

Main Memory

'
N © 2009, University of Colombo School of Computing 143
UCSC

The CPU Cycle
Control Unit

33

31 | 81

DECODE
EXECUTE

Main Memory

'
- © 2009, University of Colombo School of Computing 144
UCSC

The CPU Cycle
Control Unit

FETCH 38 31 | 81

EXECUTE

Main Memory

© 2009, University of Colombo School of Computing @ 145
UCSC

e
%)

<2,

&

FETCH
DECODE

Main Memory

&
UCsc

(o)

The CPU Cycle

38

© 2009, University of Colombo School of Computing

31

31

D

146

The CPU Cycle
Control Unit

38

11 | 81

DECODE
EXECUTE

11

Main Memory

'
- © 2009, University of Colombo School of Computing 147
UCSC

The CPU Cycle
Control Unit

38 11 | 80

DECODE
EXECUTE

30

Main Memory

uese

© 2009, University of Colombo School of Computing @ 148

The CPU Cycle
Control Unit

A 11 | 80

DECODE
EXECUTE

Main Memory

'
N © 2009, University of Colombo School of Computing 149
UCSC

The CPU Cycle
Control Unit

FETCH 3A 11 | 80

EXECUTE

Main Memory

© 2009, University of Colombo School of Computing @ 150
UCSC

e
[l

<2,

&

The CPU Cycle
Control Unit

3A

11 | 80

FETCH

DECODE

Main Memory -

e
[l

<2,

© 2009, University of Colombo School of Computing @ 151
UCSC

&

The CPU Cycle — and so on...
Control Unit

FETCH

DECODE
EXEUTE

Main Memory

-
© 2009, University of Colombo School of Computing 152
UCSC

Instruction Execution - Pipelining

« Some CPUs divide the fetch-decode-execute
cycle into smaller steps

* Instruction Level Pipelining overlaps these
smaller steps for consecutive instructions in
order to increase throughput

— Need to balance the time taken by each pipeline
stage

'
© 2009, University of Colombo School of Computing 153
UCSC

« Suppose a fetch-decode-execute cycle were broken

Instruction Level Pipelining - Example

into the following smaller steps:

1. Fetch instruction
. Decode opcode

. Fetch operands
. Execute instruction
6. Store result

a NN

For every clock cycle, one
small step is carried out, and
the stages are overlapped

UCSC

Calculate the address of operands

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

S1

S2 S3

S4

S5

S6

Instruction 1

S1 S2

S3

S4

S5

S6

Instruction 2

© 2009, University of Colombo School of Computing

D

154

Instruction Level Pipelining - Speed

There are n instructions
There are k stages in the pipeline, and the time per
stage is 1,

— The first instruction requires k x t, time to complete
The remaining (n — 1) instructions emerge from the
pipeline one per stage

— The total time to complete the remaining instructions
Thus, the time required to complete n tasks using a
k-stage pipeline is

'
© 2009, University of Colombo School of Computing 155
UCSC

Instruction Level Pipelining - Speed

- Speedup gained by using a pipeline

time without
+ | pipeline
Speedup = nxkt, . [time with
(k+n-1, pipeline

« As napproaches infinity, (k + n — 1) approaches n,
which results in a theoretical speedup of

nxkt,
Speedup = =k
ntp

© 2009, University of Colombo School of Computing @ 156

Instruction Level Pipelining - Issues

« Assumptions

— the architecture supports fetching instructions and data
in parallel

— the pipeline can be kept filled at all times
 This is not always the case due to pipeline conflicts

[t may appear that more stages imply faster
performance, but

— the amount of control logic increases with the number
of stages

— pipeline conflicts affect the execution of instructions

'
© 2009, University of Colombo School of Computing 157
UCSC

Instruction Level Pipelining — Pipeline
Conflicts

 Resource conflicts
— One instruction is storing a value to memory while
another instruction is being fetched from memory
- Data dependencies
— When the not-yet-available result of one instruction
IS the operand of a subsequent instruction
 Conditional branch statements

— Several instructions can be fetched and decoded
before the execution of a preceding branch
instruction is finished

'
© 2009, University of Colombo School of Computing 158
UCSC

Thank You

© 2009, University of Colombo School of Computing @ 159

