IT 1204
Section 2.0

Data Representation and Arithmetic

) © 2009, University of Colombo School of Computing
UCSC

What is Analog and Digital

The interpretation of an analog signal would correspond
to a signal whose key characteristic would be a
continuous signal

A digital signal is one whose key characteristic (e.g.
voltage or current) fall into discrete ranges of values

Most digital systems utilize two voltage levels

) © 2009, University of Colombo School of Computing 2
UCSC

Advantage of Digital over Analog

Analog signal Amplified signal
Faded signal

/\/ Analog

amplifier

NN AAN | =] Amplified noise
' _ The amplified noise may
\ Noise / destroy the integrity of the [V\/\
data.
Digital signal Regenerated signal

Faded signal Digital
_rl_l_]_ regenerator

\ Noise / The data has a better chance of being
received correctly. The repeater has removed
the noise so that the noise does not
interfere with the data transmitted.

Noise amplified on analog lines; eliminated on digital service.

@? © 2009, University of Colombo School of Computing
UCSC

What Is a bit

A bit is a binary digit, the smallest increment of data on a
machine. A bit can hold only one of two values: O or 1

Because bits are so small, you rarely work with
information one bit at a time.

) © 2009, University of Colombo School of Computing 4
UCSC

What is a bit

Apply to
) Knowledge
- Algorithm

Abstract
to Code for Leading
C] °
Use ~“to pe———
v Machine

make
Operate on I Interpret as
Enco}‘ 101100010010011 —
Model Information
Data

@? © 2009, University of Colombo School of Computing 5
UCSC

Bit Storage - Capacitor

1

plates dischargéd

2

0

plates charging

3

F

plates charged

4

N%
/,\\<

plates discharging

F

plates discharged

/

Can store 1
of 2 possible
states

© 2009, University of Colombo School of Computing

@ 6

What Is a bit

Byte is an abbreviation for "binary term". A single byte is
composed of 8 consecutive bits capable of storing a single
character

HIGH LOW
&F i &F T\ &F A\ LF
1 D0 T O " " 0|0
¥ dh o 4 3 2 1 [}

% BY TE %

@) © 2009, University of Colombo School of Computing 7
UCSC

Storage Hierarchy

8 Bits = 1 Byte

1024 Bytes = 1 Kilobyte (KB)
1024 KB = 1 Megabyte (MB)
1024 MB = 1 Gigabyte (GB)

A word is the default data size for a processor

) © 2009, University of Colombo School of Computing
UCSC

Numbering System

Decimal System
> Alphabet = {0,1,2,3,4,5,6,7,8,9 }

Octal System
> Alphabet = {0,1,2,3,4,5,6,7 }

Hexadecimal System
> Alphabet = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

Binary System
> Alphabet = {0,1}

) © 2009, University of Colombo School of Computing
UCSC

Converting decimal to binary

123 1111011
_g% — remainder 1 4
_gg —> remainder 1
_172 —> remainder O
_Tg —> remainder 1
_Tg —> remainder 1
_T% —> remainder 1
_% —> remainder 1

©> © 2009, University of Colombo School of Computing
UCSC

Converting decimal to binary

123 1111011

_:3% —> remainder 1

_gg — remainder 1 4

_172 — remainder O

_Tg —> remainder 1

_Tg —> remainder 1

_T% —> remainder 1

_+§ —> remainder 1 Most

significant

/ A bit

)
@> © 2009, University of Colombo School of Computing 11
UCSC

Converting decimal to binary

123 1111011
_gi —> remainder 1
ﬁ — remainder 1 \ | east
12 > remainder O Significant
7 - remainder1 bit
_Tg —> remainder 1
_T% —> remainder 1
_Tg —> remainder 1

)
@> © 2009, University of Colombo School of Computing 12
UCSC

Your turn

Convert the number 65,,to binary

@? © 2009, University of Colombo School of Computing
UCSC

@@

13

Converting binary to decimal

@

14

Converting binary to decimal

128 64 32 16 8 4 2

e

@? © 2009, University of Colombo School of Computing
UCSC

15

Converting binary to decimal

Example:
Convert the unsigned binary number 10011010 to
decimal

1101012101120

@? © 2009, University of Colombo School of Computing 16
UCSC

Converting binary to decimal

.'.';""J
Q’) © 2009, University of Colombo School of Computing
UCSC

17

Converting binary to decimal

128 64 32 16 8 4 2 1

Q? © 2009, University of Colombo School of Computing 18
UCSC

Converting binary to decimal

I G 5 4 3 2 1 0

1170 02121010

128 64 32 16 8 4 2 1

128+ 16 + 8 + 2 =154

S0, 10011010 in unsigned binary is 154 in
decimal

)
@> © 2009, University of Colombo School of Computing 19
UCSC

Converting binary to decimal

Example:
Convert the decimal number 105 to unsigned
binary

) © 2009, University of Colombo School of Computing
UCSC

20

Q. Does 128 fit into 1057

Converting binary to decimal

A. No

; 6 5 4 3 2 1
O

128 || 64 |1 32|/ 16 || 8 4 2

Next, consider the difference: 105- 0*128 = 105

ucsc

© 2009, University of Colombo School of Computing

)

21

Converting binary to decimal

Q. Does 64 fit into 1057

A. Yes
- 6 5 4 3 2 1
Ol 1

128 || 64 || 32 || 16 || 8 4 2

Next, consider the difference: 105- 1*64 = 41

Q? © 2009, University of Colombo School of Computing
UCSC

Converting binary to decimal

Q. Does 32 fit into 417

A. Yes
7 6 5 4 3 2 1
O|l1]| 1

128 || 64 || 32 || 16 || 8 4 2

Next, consider the difference: 41-32 =9

Q? © 2009, University of Colombo School of Computing
UCSC

Your turn

Convert the number 00110010, to decimal

@? © 2009, University of Colombo School of Computing
UCSC

@@

24

Converting binary numbers

Decimal System

> 0,1,2,3,4,5,6,7,8,9,10,11,12,13......
Binary System

> 0,1,170,11,100,101,110,111,1000,1001,1010,1011
,1100,1101......

) © 2009, University of Colombo School of Computing 25
UCSC

Your turn

Using 5 binary digits how many numbers you
can represent?

@) © 2009, University of Colombo School of Computing
UCSC

26

0

N OO O A WO IN -

”

Hexadecimal Notation
= HEX Bit Pattern HEX

0000 3
0001 9
0010 A
0011 B
0100 C
0101 D
0110 E
0111 F

© 2009, University of Colombo School of Computing

Bit Pattern

@

1000
1001
1010
1011
1100
1101

110
111

27

Your turn

How many binary digits need to represent a
hexadecimal digit?

@) © 2009, University of Colombo School of Computing
UCSC

28

Converting hexadecimal numbers

Decimal System

> 0,1,2,3,4,5,6,7,8,9,10,11,12,13......
Hexadecimal System

> 0,1,2,34,56,7,8,9,A,B,C,D,E,F,10,11,12,13,14,15,
16,17,18,19,1A,1B,1C,1D,1E,1F......

) © 2009, University of Colombo School of Computing
UCSC

29

Binary to Hexadecimal Conversion

. 10010110,
: 1001 0110
: 1001 0110
; 9 6

10010110, = 96 Hexadecimal

@) © 2009, University of Colombo School of Computing
ucsc

30

Binary to Hexadecimal Conversion

11011011,
1101 1011
1101 1011

D B

11011011, = DB Hexadecimal

) © 2009, University of Colombo School of Computing
UCSC

31

Your turn

Convert the following binary string to Hexadecimal ...
00101001
11110101

@? © 2009, University of Colombo School of Computing 32
UCSC

Binary to Hexadecimal Conversion

«00101001 1110101,
. 00101001 11110101

« (0010 1001 1111 0101
2 9 F 5

00101001 1110101, = 29F5 Hex

) © 2009, University of Colombo School of Computing
ucsc

33

Computer Number System

34

ASCII Codes

= American Standard Code for Information Interchange
(ASCII)

= Use bit patterns of length seven to represent

Letters of English alphabet: a-zand A -Z
Digits: 0 -9
Punctuation symbols: (,), [, ,{,}, . ", I, /, \

Arithmetic Operation symbols: +, -, *, <, >, =
Special symbols: (space), %, $, #, &, @, »

YV V V V VY

. 2" =128 characters can be represented by ASCII

) © 2009, University of Colombo School of Computing 35
UCSC

Character Representation: ASCII Table

Symbol

(space)

%

ASCII

00100000

00100001

00100010

00100011

00100100

00100101

00100110

Symbol

© 2009, University of Colombo School of Computing

ASCII

01000001

01000010

01000011

01000100

01000101

01000110

01000111

Symbol

ASCI|I

01100001

01100010

01100011

01100100

01100101

01100110

01100111

Symbol

ASCI|I

00110000

00110001

00110010

00110011

00110100

00110101

00110110

36

Character Representation: ASCII Table

Dec HxQct Char Dec Hy Oct Html Chr |[Dec Hx Oct Himl Chr| Dec Hx Oct Himl Chr
0O 0 o000 NOL (rall) 32 20 D40 Z; 3pace| 64 40 100 «#6d; [95 60 140 =#96;
1l 1 001 30H (start of heading) 33 21 041 ŏ ! 65 41 101 A 4 97 61 141 Ο 12
2 2 002 5TX [start of text) 34 22 04z =#34; 7 66 42 102 «#c6; b a8 52 142 «#95; b
3 3 003 ETX (end of text) 35 23 043 # ¥ 67 43 103 C C 99 53 143 &#¥99; C
4 4 004 EOT (end of transmission) 36 24 044 =#36; 3 65 44 104 <#68; D |[1l00 54 144 &#l00; d
5 5 005 ENQ (enmairy) 37 25 045 % % 69 45 105 «#69; E |10l 55 145 <«#101l; e
& 6 006 ACE [(acknowledge) 35 Ze 046 # & 70 46 10s «#70; F (102 g6 145 fZ; £
77 007 BEEL (hell) 39 27 047 =#39; 71 47 107 Gl; G |103 67 147 &#l03; o
5 & 010 BE% (backspace] 40 23 050 =#40; | 72 45 110 «#72; H (104 &5 150 h h
9 9 011 TAE (horizontal tahb) 41 29 051 =#4l:) 73 49 111 «#73: I |105 59 151 i 1
10 4 QlZ LF (NL line feed, new line)| 42 Z4 052 &#dd; ¥ 74 4k 11z <#74; T |106 64 152 j]
11 B 013 VT (wertical tah) 43 2B 053 #4353 + 75 4F 115 «#75: K |107 6B 153 &«#107: k
1z € 0l4 FF (NP form feed, new page)| 44 ZC 054 , , 76 4C 114 «#76; L [lo0s &C 154 «#105; 1
13 D 0l5 CR (carriage return) 45 2D 055 d45; - 77T 4D 115 M:; M |109 6D 155 m m
ld4 E 0le 30 ([(shift out) 45 zZE 056 s#da; . T8 4E 1le S; N |110 6E 156 n 1
15 F 017 31 [shift in) 47 ZF 057 / / 79 4F 117 ##72; 0 |111 B/F 157 =#11l1l; o
le 10 020 DLE (data link escape) 43 30 060 &#F45; 0 30 50 lz0 +#50; P |112Z 70 le0 &#¥1llz; P
17 11 021 DC1 [(dewice control 1) 49 31 06l &=#49; 1 g1 51 121 3 0 |113 71 16l q:; o
18 12 022 DCZ [(dewice control 2) ED 32 DeZ 2 2 82 B2 lZZ 2E; B |114 72 leZ r ¢
19 13 023 DC3 [(dewice control 3) 51 33 063 &=#51; 5 83 53 123 +#53; 3 |115 73 lo3s =#1ll1l5; =5
20 14 024 DC4d [(dewice control 4) EZ 34 Ded Er 4 g4 54 124 «#584; T |116 74 1led t ©
21 15 025 NAE [(negative acknowledoe) 53 35 065 5: 5 G5 55 125 7 T |117 75 1p5 u u
22 1a 026 3YHN (synchronous idle) L4 3 Dee 6 6 36 5e lze &#C6; WV |118 76 leo v v
23 17 027 ETE (end of trans. block) 55 37 067 7 7 g7 57 127 9: W |119 77 1la7 &#l19; w
24 18 030 CAN [cancel) L5 33 070 &#S56; O 358 53 130 #5357 X |1zZ0 78 170 &#¥lz0; =
25 19 031 EM (end of medium) 57 39 071 =#57:; 9 89 59 131 ; ¥ |1z21 79 171 &#l:21:; ¥
26 la 032 3ITUE [(substitute) L8 34 072 &#SEr Q0 54 132 &#°90; Z |12Z T4 1T7Z &#¥lZzZ; =
27 1B 033 ESC [escape) 59 3B 073 &=#59; ; 91 5B 133 «#91; [|123 7B 173 &«#l123: |
28 1C 034 F5 [(f£ile separator) 60 3C 074 < < Oz SC 134 \ % |1z24 7C 174 &#lz4;
29 1D 035 3 (group Separator) Gl 30 075 l; = 93 5D 135]:] (125 7D 175 zZ5; }
30 1E 036 E5 (record separator) 6Z JE 076 &#GE; = Q4 EE 136 ^ ~ |12Z6 T7E 176 &#lZa; ~
31 1F 037 US (unit separator) 63 3F 077 ?: 7 Q5 LF 137 «#95: (127 7F 177 DEL

Source: www. LookupTables.com

© 2009, University of Colombo School of Computing @ 37

Character Representation: ASCII Table

As computers became more reliable the need for parity bit
faded.

» Computer manufacturers extended ASCII to provide more
characters, e.g., international characters

» Usedranges (27) 128 < 255 (28 - 1)

128 o 144 E 1al i 177 EE 193 L 209 + 225 Ik 241 +
129 1 145 = 1a2 o 172 ﬁ 1924 + 210 T 226 r 242 =
1z0 é 146 & 143 1 179 | 195 F 211 LS 227 T 243 =
151 i 147 g 164 i1 120 1 194 — 212 L 2328 = 244 I
132 i 148 a] 1as B 181 4 197 + 213 [229 o 245 J
133 A 149] 1ada a 122 1 192 E 214 T 230 L 248 =
154 a 150 i1 1a7 = 183 T 1949 Ik 215 1= 231 T 247 ==
135 G 151 11 148 i 1824 5 200 L 21a + 2352 == 248 =
136 & 152 _ 162 _ 185 4l 201 IF 217 .| 233 = 240
137 & 153] 170 = 186 Il 202 it 218 r 234 o 250
128 é 154 10 171 1L 127 | 203 IF 219 [| 235] 251 ~f
1z9 i 156 £ 172 14 188 4 204 = 220 = 236 oo 252 _
140 % 157 i 173 i 189 4 205 = 221 | 237] 253 =
141 i 158 - 174 120 4 206 i 222 | 238 = 254 |
142 2 159 ki 1745 o 191 1 207 L 223 - 238 i 255
143 A 160 4 17a 192 L 20% - 224 o 240 =
- Source: www. LookupTable= .com
©

Y
-

) © 2009, University of Colombo School of Computing 38
UCSC

Your turn

The BINARY string ...

0110101 can have two meanings!
the CHARACTER “5” in ASCII
AND ...

the DECIMAL NUMBER 53 in
BINARY Notation

@? © 2009, University of Colombo School of Computing 39
UCSC

Character Representation: Unicode

= EBCDIC and ASCII are built around the Latin alphabet

> Are restricted in their ability for representing non-
Latin alphabet

» Countries developed their own codes for native
languages

= Unicode: 16-bit system that can encode the characters
of most languages

» 16 bits = 216 = 65,636 characters

) © 2009, University of Colombo School of Computing 40
UCSC

Character Representation: Unicode

= The Java programming language and some operating
systems now use Unicode as their default character
code

= Unicode codespace is divided into six parts

» The first part is for Western alphabet codes,
including English, Greek, and Russian

= Downward compatible with ASCII and Latin-1 character
sets

) © 2009, University of Colombo School of Computing 41
UCSC

Character Representation: Unicode

Character Character Set Number of Hexadecimal
Types Description Characters Values
; - 0000
Latin, Cyrillic
Alphabets ‘ ’ 8192 to
Greek, etc. 1FFE
Dingbats, 2000
Symbols Mathematical, 4096 to
etc. 2FFF
Chinese, Japanese,

CJK and Korean phonetic 4096 3?20
symbols and 3FFF
punctuation
Unified Chinese, 4000

Han Japanese, 40,960 to
and Korean DFFF
Expansion or 4096 E?gﬂ
spillover from Han EFFF

FO00
User defined 4095 to
FFFE

© 2009, University of Colombo School of Computing @

42

Character Representation: Example

= English section of Unicode Table
» ACSI| equivalent of Ais 4146
» Unicode is equivalent of A:

000 001 Q02 003 004 Q05 006 007
. rrrrrrrrrrrrrrr

00 Z1f*qT3\\\\\\\“~\\\\\\\\\\\\\\\\\E\NULEDLEE iseil () (Ep Pl p
I-_C;ZIEIZI_J L_D;J;D_J I-_III-:E;D_ o030 0040 00s0 G0 mm

------ [
t|isonifeet | TT# |A| Q| a|q
L_IZIEIIZ_H_J L_IZIIZI1_1_J ooz 0031 0041 0051 0061 m71
olistiloc2l| " |2 IBIR|b|r
CIEIIZ_Q_J anz Rz 32 042 0052 G2 w72
sl |bocsl | # 131 C| S| ¢c|s
-CI_ZIEG_ a0z oo23 0033 043 0053 LK w73
— slieori|iocsi| S 14 [D|T | d| t
. FuII Chart |ISt' L_E;J;-t_d L_D;Zn_-#_d o024 0034 0044 0054 (LT m74

> http://www.unicode.org/charts/

43

&)
@> © 2009, University of Colombo School of Computing
UCSC

Performing Arithmetic

© 2009, University of Colombo School of Computing @

44

Binary Addition

0+0=0
0+1=1
1+0=1
1+1=10(carry: 1)
E.g.
11111 (carry)

> 01101
> + 10111
> = 100100

-@zcsc © 2009, University of Colombo School of Computing

@

45

Binary Subtraction
0-0=0
0-1=1 (with borrow)
1-0=1

1-1=0
E.g.
* *OF (borrow)
> 1 01101
> - 010111
> =0 10110

)
@> © 2009, University of Colombo School of Computing
UCSC

@

46

vV VWV VYV V V VY

Binary Multiplication

1011
x 1010

+ + +

0000O

101 1
000O
1011

1101110

uese

© 2009, University of Colombo School of Computing @

47

Binary Division

E.g.
101

101 (11011
> -1 0 1
> 011
> - 000
> 11 1
> -1 0 1
> 10

)
@? © 2009, University of Colombo School of Computing
UCSC

@

48

Representing Numbers

Problems of number representation
» Positive and negative
» Radix point
» Range of representation

Different ways to represent numbers
» Unsigned representation: non-negative integers
> Signed representation: integers
» Floating-point representation: fractions

) © 2009, University of Colombo School of Computing 49
UCSC

Unsigned and Signed Numbers

= Unsigned binary numbers
» Have 0 and 1 to represent numbers

» Only positive numbers stored in binary

» The Smallest binary number would be ...
OO0OO0OOOOO O whichequalsto 0

» The largest binary number would be ...
11111111 whichequals....
128 +64 +32+16+8+ 4 +2 + 1 =255=2°1

» Therefore the range is 0 - 255 (256 numbers)

) © 2009, University of Colombo School of Computing 50
UCSC

Unsigned and Signed Numbers

Signed binary numbers
» Have 0 and 1 to represent numbers

» The leftmost bit is a sign bit
« O for positive

« 1 for negative

Sign bit

@) © 2009, University of Colombo School of Computing
UCSC

51

Unsigned and Signed Numbers

Signed binary numbers
» The Smallest positive binary number is

OO0OO0OO0OO0O0O O whichequalstoO

» The largest positive binary number is
01111111 whichequals....
64+32+16+8+4+2+1=127=2"-1

» Therefore the range for positive numbers is 0 - 127
» (128 numbers)

) © 2009, University of Colombo School of Computing
UCSC

52

Negative Numbers in Binary

= Problems with simple signed representation
» Two representation of zero: + 0 and — 0
00000000 and10000000

>

» Need to consider both sign and magnitude in arithmetic

E.Q. 5—-3

5+ (-3)
00000101+10000011
10001000

-8

) © 2009, University of Colombo School of Computing 53
UCSC

Negative Numbers in Binary...

= Problems with simple signed representation
» Need to consider both sign and magnitude in arithmetic

 E.qg. = 18 + (-18)

. = 00010010 +10010010
. = 10100100

: = -36

) © 2009, University of Colombo School of Computing 54
UCSC

Negative Numbers in Binary...

= The representation of a negative integer (Two’s
Complement) is established by:

>

>

Start from the signed binary representation of its
positive value

Copy the bit pattern from right to left until a 1 has been
copied

Complement the remaining bits: all the 1's with 0’s, and
all the O’s with 1's

An exception: 10000000 =-128

) © 2009, University of Colombo School of Computing 55
UCSC

Your turn

What is the SMALLEST and LARGEST signed binary
numbers that can be stored in 1 BYTE

@) © 2009, University of Colombo School of Computing
UCSC

56

vV V V VvV VvV V V V VYV VYV VY V V

Two’s Compliment (8 bit pattern)

01111111 = +127
00000011 = +3
00000010 = 42
00000001 = +1
0O000O0O0O0O = 0
11111111 = -1
11111110 = -2
11111101 = -3
10000001 = -127
10000000 = -128

©> © 2009, University of Colombo School of Computing
UCSC

o7

Two’s Compliment benefits

= One representation of zero
= Arithmetic works easily

= Negating is fairly easy

) © 2009, University of Colombo School of Computing
UCSC

Ranges of Integer Representation

8-bit unsigned binary representation
» Largestnumber:1 1111111,
> Smallest number:0 0 0 0 0 0 0 O,

8-bit two’s complement representation
» Largestnumber:0 1 111111,
> Smallestnumber:1 0 0 0 0 0 0 O,

The problem of overflow
» 130,,=1 0000010,
> 0000 10,intwo’s complement

) © 2009, University of Colombo School of Computing
ucsc

255,
010

127,

59

Geometric Depiction of Two’s Complement Integers

subtraction) addition subtraction) addition
ol positive of positive ol positive of positive
numbers numbers numbers numbers

000...0

1101 0011
1100 010

1001 0111

10:00)

myti=1

METH54-3-2-101 23450 THY

w-1 4
Al

{a) 4-bit numbers (b} n-bit numbers

Q) © 2009, University of Colombo School of Computing 60
UCSC

Integer Data Types in C++

Type Size in Bits Range
unsigned int 16 0 — 65535
int 16 -32768 - 32767
unsigned long int 32 0 to 4,294,967,295
long int 32 -2,147,483,648 to0 2,147,483,647

ucsc

© 2009, University of Colombo School of Computing @ 61

Fractions in Decimal

16.357 = the SUM of ...

7*10% = /500

3* 101 =3/,
6*100=6
1*10"=10

000+ °l100 + /19 + 6 + 10 = 16 357/,

) © 2009, University of Colombo School of Computing
ucsc

@

62

Fractions in Binary

10.011 = the SUM of ...

1%23 =1/
1*22=1,
0*21=0
0*20=0
1%21=2

g +1, +2= 234

i.e. 10.011 =2 3/5 in Decimal (Base 10)

) © 2009, University of Colombo School of Computing
ucsc

@

63

Your turn

What is 011.0101 in Base 107

@? © 2009, University of Colombo School of Computing
UCSC

@@

64

Fractions in Binary

011.0101 = the SUM of ...

1%24=1/
0*23=0
1*22=1/,
0*21=0
1*20=1
1*21=2
0*22=0

Ve + W, +1+2=35/4

© 2009, University of Colombo School of Computing

65

Decimal Scientific Notation

Consider the following representation in decimal
number ...

> 135.26 = .13526 x 10°
> 13526000 = .13526 x 10°
> 0.0000002452 = .2452 x 107

113526 x 10° has the following components:
» a Mantissa =.13526
» an Exponent = 3
» aBase = 10

) © 2009, University of Colombo School of Computing
UCSC

66

Floating Point Representation of
Fractions

Scientific notation for binary. Examples ...
> 11011.101 = 1.1011101 x 2"
> -10110110000 = -1.011011 x 2°
> 0.00000010110111 = 1.0110111x 2"

) © 2009, University of Colombo School of Computing
UCSC

67

Floating Point Format in 1 Byte

RADIX POINT
o —

S O

MANTISSA

EXPONENT

SIGN

SIGN =0 (+ve) | 1 (-ve)
EXPONENT in EXCESS FOUR Notation

)
@? © 2009, University of Colombo School of Computing 68
UCSC

Floating Point Format in 1 Byte

*To STORE the number ...
+11/5=1.001
in FLOATING POINT NOTATION ...

1. STORE the SIGN BIT

)
@> © 2009, University of Colombo School of Computing
UCSC

69

Floating Point Format in 1 Byte

*To STORE the number ...
+11/5=1.001
in FLOATING POINT NOTATION ...

1. STORE the SIGN BIT

o]

)
@? © 2009, University of Colombo School of Computing
ucsc

Floating Point Format in 1 Byte

*To STORE the number ...
+11/5=1.001
in FLOATING POINT NOTATION ...

2. STORE the MANTISSA BITS

)
@> © 2009, University of Colombo School of Computing
UCSC

71

Floating Point Format in 1 Byte

*To STORE the number ...
+11/5=1.001
in FLOATING POINT NOTATION ...

2. STORE the MANTISSA BITS

)
@? © 2009, University of Colombo School of Computing
UCSC

Floating Point Format in 1 Byte

*To STORE the number ...
+11/5=1.001
in FLOATING POINT NOTATION ...

3. STORE the EXPONENT BITS

)
@? © 2009, University of Colombo School of Computing
UCSC

73

Excess-k Representation

Bit Pattern Value Representation
= 111 4
= 110 3
= 101 2
= 100 1
= 011 0
= 010 -1
= 001 -2
= 000 -3

EXCESS THREE NOTATION
An excess notation system using bit pattern of length three

) © 2009, University of Colombo School of Computing 74
UCSC

Excess-k Representation

For N bit numbers, k is 2N-1-1
— E.g., for 4-bit integers, kis 7

The actual value of each bit string is its
unsigned value minus k

To represent a number in excess-k, add k

) © 2009, University of Colombo School of Computing
ucsc

75

Excess-k Representation
Unsigned Excess-k

© 2009, University of Colombo School of Computing @

76

Floating Point Format in 1 Byte

*To STORE the number ...
+11/5=1.001
in FLOATING POINT NOTATION ...

3. STORE the EXPONENT BITS

110(0]11]0

)
@? © 2009, University of Colombo School of Computing
UCSC

77

Floating Point Format in 1 Byte

*To STORE the number ...
-3Y/,=-11.01
in FLOATING POINT NOTATION ...

1. STORE the SIGN BIT

)
@> © 2009, University of Colombo School of Computing
UCSC

78

Floating Point Format in 1 Byte

*To STORE the number ...
-3Y/,=-11.01
in FLOATING POINT NOTATION ...

1. STORE the SIGN BIT

)
@> © 2009, University of Colombo School of Computing
UCSC

79

Floating Point Format in 1 Byte

*To STORE the number ...
-3Y/,=-11.01
in FLOATING POINT NOTATION ...

2. STORE the MANTISSA BITS

)
@> © 2009, University of Colombo School of Computing
UCSC

80

Floating Point Format in 1 Byte

*To STORE the number ...
-3Y/,=-11.01
in FLOATING POINT NOTATION ...

2. STORE the MANTISSA BITS

)
@? © 2009, University of Colombo School of Computing
UCSC

81

Floating Point Format in 1 Byte

*To STORE the number ...
-3Y/,=-11.01
in FLOATING POINT NOTATION ...

3. STORE the EXPONENT BITS

)
@> © 2009, University of Colombo School of Computing
UCSC

82

Floating Point Format in 1 Byte

*To STORE the number ...
-3Y,=-11.01
iIn FLOATING POINT NOTATION ...

3. STORE the EXPONENT BITS

)
@? © 2009, University of Colombo School of Computing
UCSC

Your turn

Write down the FLOATING POINT
form for the number +11/;, ?

@? © 2009, University of Colombo School of Computing @ 84
UCSC

SOLUTION: +1/,, (.001011)

1. STORE the SIGN BIT

]

)
@? © 2009, University of Colombo School of Computing
UCSC

85

SOLUTION: +1/,, (.001011)

1. STORE the SIGN BIT

o]

)
@> © 2009, University of Colombo School of Computing
UCSC

86

SOLUTION: +1/,, (.001011)
2. STORE the MANTISSA BITS

S I .

)
@> © 2009, University of Colombo School of Computing
UCSC

87

SOLUTION: +1/,, (.001011)

2. STORE the MANTISSA BITS

)
@> © 2009, University of Colombo School of Computing
UCSC

88

SOLUTION: +1/,, (.001011)

3. STORE the EXPONENT BITS

)
@> © 2009, University of Colombo School of Computing
UCSC

89

Converting FP Binary to Decimal

Example ...

*CONVERT 10111010 to decimal steps ...

1. Convert EXPONENT (EXCESS 4)

2. Apply EXPONENT to MANTISSA
3. Convert BINARY Fraction
4. Apply SIGN

) © 2009, University of Colombo School of Computing
UCSC

@

90

1.

SOLUTION: 10111010

CONVERT THE EXPONENT

‘1]o |11 f1|of1]o

)
@? © 2009, University of Colombo School of Computing
UCSC

91

SOLUTION: 10111010

2. APPLY the EXPONENT to the MANTISSA

‘1]o |11]1]of1]o

)
@> © 2009, University of Colombo School of Computing
UCSC

92

SOLUTION: 10111010

3. CONVERT from BINARY FRACTION

‘1]o |11 f1]|of1]o

)
@> © 2009, University of Colombo School of Computing
UCSC

93

SOLUTION: 10111010

4. APPLY the SIGN

‘1]o |11 f1]|of1]o
|

S (1t 45)= -1

)
@? © 2009, University of Colombo School of Computing
ucsc

94

ROUND-OFF ERRORS

*CONSIDER the FLOATING
POINT Form of the number...

+ 2 /6

@) © 2009, University of Colombo School of Computing
ucsc

95

1.

ROUND-OFF ERRORS +2°/,

CONVERT to BINARY FRACTION ...
25/, = 10.0101

le. 2+ 1Y, +1

) © 2009, University of Colombo School of Computing
ucsc

96

ROUND-OFF ERRORS +2°/, = 10.101

2. STORE THE SIGN BIT ...

=]

)
@? © 2009, University of Colombo School of Computing
UCSC

97

ROUND-OFF ERRORS +2°/, = 10.101

2. STORE THE SIGN BIT ...

S

)
@? © 2009, University of Colombo School of Computing
UCSC

98

ROUND-OFF ERRORS +2°/, = 10.101

3. STORE THE MANTISSA ...

S

)
@? © 2009, University of Colombo School of Computing
ucsc

99

ROUND-OFF ERRORS +2°/, = 10.101

3. STORE THE MANTISSA ...

)
@> © 2009, University of Colombo School of Computing 100
ucsc

ROUND-OFF ERRORS +2°/, = 10.101

3. STORE THE MANTISSA ...

ucsc

ROUND-OFF ERRORS +2°/, = 10.101

3. STORE THE MANTISSA ...

0
) © 2009, University of Colombo School oTComputing 102
ucsc

ROUND-OFF ERRORS +2°/, = 10.101

4. STORE THE EXPONENT ...

)
@> © 2009, University of Colombo School of Computing 103
UCSC

ROUND-OFF ERRORS +2°/, = 10.101

4. STORE THE EXPONENT ...

L
1{0 0 0 (0110

Converting this back to DECIMAL we get ...

21/, i.e. a ROUND OFF ERROR of 1/,

)
@? © 2009, University of Colombo School of Computing
UCSC

104

Range of FP Representation

What is the BIGGEST and SMALLEST
can be represented by one-byte floating
point notation

@? © 2009, University of Colombo School of Computing 105
UCSC

Range of FP Representation

The biggest number can be represented by one-byte

floating point notation is:
o

=+1.1111 x 2% = +11111 = +31

)
@? © 2009, University of Colombo School of Computing 106
UCSC

Range of FP Representation

The Smallest positive number can be represented by
one-byte floating point notation is:

L
0]0 |0 [O]JO O[O

= +1.0000 x 2° = +.001 = +1/,

)
@? © 2009, University of Colombo School of Computing 107
ucsc

Range of FP Representation

The largest negative number can be represented by
one-byte floating point notation is:

L
0]0 |0 [O]JO O[O

= -1.0000 x 2° = -.001 = -Y/

)
@? © 2009, University of Colombo School of Computing 108
ucsc

Range of FP Representation

= The smallest number can be represented by one-byte
floating point notation is:

. =-1.1111 x 2* = -11111 = -31

)
@? © 2009, University of Colombo School of Computing 109
ucsc

Range of FP Representation

What is the SOLUTION for this???

@? © 2009, University of Colombo School of Computing 110
UCSC

Floating-Point Data types in C++

Type Size in Bits Range
float 32 3.4E-38 to 3.4E+38
Six digits of precision
double 64 1.7E-308 to 1.7E+308
Ten digits of precision
long double 80 3.4E-4932 to 3.4E+4932
Ten digits of precision

g?
uese

© 2009, University of Colombo School of Computing

)

111

Floating-Point Representation

Biased
Exponent

Significand or Mantissa

Sign bit

+/- . Mantissa x 2 exponent

Point is actually fixed between sign bit and body of
Mantissa

Exponent indicates place value (point position)

@) © 2009, University of Colombo School of Computing 112
UCSC

Floating-Point Representation

= Mantissa is stored in 2’s compliment

= EXponent is in excess notation

8 bit exponent field

Pure range is 0 — 255

Subtract 127 to get correct value
Range -127 to +128

YV V V V

) © 2009, University of Colombo School of Computing 113
UCSC

Floating-Point Representation

Floating Point numbers are usually normalized

l.e. exponent is adjusted so that leading bit (MSB) of
mantissa is 1

Since it is always 1 there is no need to store it

Where numbers are normalized to give a single digit
before the decimal point

» E.g.3.123x 10°

) © 2009, University of Colombo School of Computing 114
UCSC

Floating-Point Representation

sign of
sienificand
- 23 bits

-f— 5 bits -
\T biased exponent significand

{a) Format

0.11010001 210100 - p 10010011 10100010000000000000000
-0.11010001 210100 - 71 10010011 10100010000000000000000
0.11010001 2710100 = p 01101011 10100010000000000000000
-0.11010001 2°10100 - 9 01101011 10100010000000000000000

(b) Examples

@? © 2009, University of Colombo School of Computing 115
UCSC

Floating Point Representation:
Expressible Numbers

Expressible Inlegers

e

| | | Number
« a7 0 21 _q > Line

{a) Twos Complement Inlegers

Negative Positive
Underflow Underflow
Negalive Expressible Negative Expressible Positive Posilive
Overflow Numbers \ / Numbers Overflow

A A AR A A

—(1-2% 18 05 2" o 05 2V (1-2%) 2! Line

{b) Floating-Point Numbers

@? © 2009, University of Colombo School of Computing 116
UCSC

Representing the Mantissa

= The mantissa has to be in the range
1 < mantissa < base

= Therefore
> If we use base 2, the digit before the point must be a 1

> So we don't have to worry about storing it
= We get 24 bits of precision using 23 bits

> 24 Dbits of precision are equivalent to a little over 7

decimal digits:
24

~ 1.2
log, 10

©? © 2009, University of Colombo School of Computing 117
UCSC

Representing the Mantissa

= Suppose we want to represent n:
3.1415926535897932384626433832795.....

= That means that we can only represent it
as:
3.141592 (if we truncate)
3.141593 (if we round)

)
@> © 2009, University of Colombo School of Computing 118
UCSC

Representing the Mantissa

= The IEEE standard restricts exponents to the
range:
—126 < exponent < +127

= The exponents —127 and +128 have special
meanings:

— If exponent = —-127, the stored value is O

— If exponent = 128, the stored value is «

) © 2009, University of Colombo School of Computing 119
UCSC

Floating Point Overflow

= Floating point representations can overflow,
e.g.,

1.111111 x 2%/
+1.111111 x 2%/

11.111110 x 2127

1.1111110 x 2128 = o

) © 2009, University of Colombo School of Computing 120
ucsc

Floating Point Underflow

= Floating point numbers can also get too small,
e.g.,

10.010000 x 2-126
+11.000000 x 2°

0.110000 x 2-126

1.100000 x 2°227= ()

©? © 2009, University of Colombo School of Computing 121
ucsc

Floating Point Representation:
Double Precision

IEEE-754 Double Precision Standard
= 64 bits:

— 1 bit sign
— 52 bit mantissa

— 11 bit exponent
» Exponent range is -1022 to +1023

> k =2111-1=1023

) © 2009, University of Colombo School of Computing 122
UCSC

Limitations

Floating-point representations only approximate real
numbers

Using a greater number of bits in a representation can
reduce errors but can never eliminate them

Floating point errors
> Overflow/underflow can cause programs to crash
» Can lead to erroneous results / hard to detect

) © 2009, University of Colombo School of Computing
UCSC

123

Floating Point Addition

Five steps to add two floating point numbers:

1.

Express the numbers with the same exponent
(denormalize)

Add the mantissas

Adjust the mantissa to one digit/bit before the point
(renormalize)

Round or truncate to required precision

Check for overflow/underflow

) © 2009, University of Colombo School of Computing 124
UCSC

Thank You

© 2009, University of Colombo School of Computing

@

125

