
1© 2009, University of Colombo School of Computing

IT 1204
Section 3.0

Boolean Algebra and Digital Logic

2© 2009, University of Colombo School of Computing

Boolean Algebra

3© 2009, University of Colombo School of Computing

A B X

0 0

0 1

1 0

1 1

Logic Equations to Truth Tables

ABBABAX ++= ..

4© 2009, University of Colombo School of Computing

The OR operation performed on the products of the AND
operation

Fill the corresponding cells with 1 for each product, the
other cells with 0

A B X

0 0 1

0 1 1

1 0 0

1 1 1

Sum of Products

0,1

0,1

).().().(

==

==

++=

BB

AA

BABABAX

5© 2009, University of Colombo School of Computing

The AND operation performed on the sums of the OR
operation

Fill the corresponding cells with 0 for each sum, the
other cells with 1

A B X

0 0 1

0 1 1

1 0 0

1 1 0

Product of Sums

1,0

1,0

)).((

==

==

++=

BB

AA

BABAY

6© 2009, University of Colombo School of Computing

A B X

0 0 1

0 1 1

1 0 0

1 1 0

• Sum of Products - consider 1s
– Consider A=1,B=1

• Product of sums – consider 0s
– Consider A=0,B=0

Truth Tables to Logic Equations

).().(BABAX +=

)).((BABAX ++=

7© 2009, University of Colombo School of Computing

Convert the following equation which is in the form of
Product-of-sums into the form of Sum-of-products

Your Turn: Exercise1

))()()(()(CADBADCBACBAABCDf ++++++++=

8© 2009, University of Colombo School of Computing

Answer: Exercise1

).()..()...()..()(

).()..()...()..()(

)()()()()(

))()()(()(

))()()(()(

CADBADCBACBAABCDf

CADBADCBACBAABCDf

CADBADCBACBAABCDf

CADBADCBACBAABCDf

CADBADCBACBAABCDf

+++=

+++=

+++++++++++=

++++++++=

++++++++=

9© 2009, University of Colombo School of Computing

0 . 0 = 0

1 + 1 = 1

0 + 0 = 0

1 . 1 = 1

1 . 0 = 0 . 1 = 0

1 + 0 = 0 + 1 = 1

Boolean Postulates

10© 2009, University of Colombo School of Computing

Commutative Law
A + B = B + A

A B = B A

Associate Law
(A + B) + C = A + (B + C)

(A B) C = A (B C)

Laws of Boolean Algebra

11© 2009, University of Colombo School of Computing

Distributive Law
A (B + C) = A B + A C

A + (BC) = (A + B) (A + C)

Identity Law
A + A = A

A . A = A

Laws of Boolean Algebra

12© 2009, University of Colombo School of Computing

Redundancy Law
A + AB = A

A (A + B) = A

Demorgan’s Theorem

.

Laws of Boolean Algebra

BABA

BABA

+=

=+

).(

.)(

13© 2009, University of Colombo School of Computing

.

.

Laws of Boolean Algebra

ABABA

ABABA

=++

=+

))((

..

00.
0
=
=+

A
AA

14© 2009, University of Colombo School of Computing

.

.

Laws of Boolean Algebra

AA
A
=
=+

.1
11

0.

1

=

=+

AA

AA

15© 2009, University of Colombo School of Computing

.

Laws of Boolean Algebra

ABBAA

BABAA

=+

+=+

)(

.

16© 2009, University of Colombo School of Computing

A Boolean function can be realised in either SOP or
POS form

At this point, it would seem that the choice would
depend on whether the truth table contains more 1s
and 0s for the output function

The SOP has one term for each 1, and the POS has
one term for each 0

Implementation of Boolean Functions

17© 2009, University of Colombo School of Computing

However, there are other considerations:

It is generally possible to derive a simpler Boolean
expression from truth table than either SOP or
POS

It may be preferable to implement the function with
a single gate type (NAND or NOR)

Implementation of Boolean Functions

18© 2009, University of Colombo School of Computing

The significance of this is that, with a simpler
Boolean expression, fewer gates will be needed to
implement the function

Methods that can be used to achieve simplification
are:

Algebraic Simplification

Karnaugh Maps

Implementation of Boolean Functions

19© 2009, University of Colombo School of Computing

Simplify the following equation using Boolean
algebra laws

Your Turn: Algebraic Simplification

))(()(CBACBAABCf +++=

20© 2009, University of Colombo School of Computing

Answer: Algebraic Simplification

CBAABCf

CCBCBCBCBAABCf

CCBCACBBBACBAAAABCf

CBACBAABCf

+=

+++++=

+++++=

+++=

)(

)1()(

)(

))(()(

21© 2009, University of Colombo School of Computing

For purposes of simplification, the Karnaugh map is a
convenient way of representing a Boolean function of
a small number (up to 4 to 6) of variables

The map is an array of 2n squares, representing the
possible combinations of values of n binary variables

Karnaugh Maps

22© 2009, University of Colombo School of Computing

The map can be used to represent any Boolean
function in the following way:

Each square corresponds to a unique product in the
sum-of-products form.

With a 1 value corresponding to the variable and a 0
value corresponding to the NOT of that variable

Karnaugh Maps

23© 2009, University of Colombo School of Computing

0 1

0 0 1

1 1 1

AB

Karnaugh Maps: 2 Values

ABBABAX ++= ..

24© 2009, University of Colombo School of Computing

The AB corresponds to the fourth square in the
Figure

For each such production in the function, 1 is
placed in the corresponding square

11
00 01 11 10

AB

F = AB + AB

Karnaugh Maps: 2 Values

25© 2009, University of Colombo School of Computing

00 01 11 10

0 1 1 0 0

1 0 0 1 1

AB
C

Karnaugh Maps: 3 Values

CBACBACBACBAX +++=

26© 2009, University of Colombo School of Computing

00 01 11 10

00 1 0 1 1

01 0 1 1 0

11 0 1 1 0

10 0 1 0 1

AB
CD

Karnaugh Maps: 4 Values

DCBADCBADCBADCBADCBADCBADCBADCBAX +++++++=

27© 2009, University of Colombo School of Computing

Simplify the following Karnaugh Map using Boolean
equations (Write your answers in both SOPSOP and POS)

00 01 11 10

0 0 1 0 0

1 1 1 0 1

ABAB
CC

Karnaugh Maps: Exercise 1

28© 2009, University of Colombo School of Computing

00 01 11 10

0 0 1 0 0

1 1 1 0 1

ABAB
CC

Karnaugh Maps: Answer

)..()..()..()..(CBACBACBACBA +++ CBBA +

)).().().((CBACBACBACBA ++++++++)).((BACB ++

29© 2009, University of Colombo School of Computing

Simplify the following Karnaugh Map using Boolean
equations (Write your answers in both SOPSOP and POSPOS)

00 01 11 10

00 1 0 0 1

01 0 1 1 0

11 0 0 1 0

10 1 0 0 1

ABAB
CDCD

Karnaugh Maps: Exercise 2

30© 2009, University of Colombo School of Computing

00 01 11 10

00 1 0 0 1

01 0 1 1 0

11 0 0 1 0

10 1 0 0 1

ABAB
CDCD

Karnaugh Maps: Answer

)()()()()()()(DCBADCBAABCDDCABDCBADCBADCBA ++++++

ABDDCBDB ++

31© 2009, University of Colombo School of Computing

00 01 11 10

00 1 0 0 1

01 0 1 1 0

11 0 0 1 0

10 1 0 0 1

ABAB
CDCD

Karnaugh Maps: Answer

)(

).).().().((

).).().().((

DCBA

DCBADCBADCBADCBA

DCBADCBADCBADCBA

+++

++++++++++++

++++++++++++

)).().((DCADBDB ++++

32© 2009, University of Colombo School of Computing

C

A

D

B

The labeling used in figure emphasizes the relationship
between variables and the rows and columns of the map

The two rows embraced by
the symbol A are those in
which the variable A has the
value 1; the rows not
embraced by the symbol A
are those in which A is 0

Simplified Labeling of Karnaugh Maps

33© 2009, University of Colombo School of Computing

Once the map of a function is created, we can often write
a simple algebraic expression for it by noting the
arrangement of the 1s on the map

The principle is as follows:

Any two squares that are adjacent differ in only one of
the variables

If two adjacent squares both have an entry of 1, then
the corresponding product terms differ in only one
variable
In such a case, the two terms can be merged by
eliminating that variable

Simplified Labeling of Karnaugh Maps

34© 2009, University of Colombo School of Computing

1 1

CD

AB

For example, in following FIGURE, the two adjacent
squares correspond to the two terms ABCD and ABCD

The function expressed is
ABCD + ABCD = ABD

Simplified Labeling of Karnaugh Maps

35© 2009, University of Colombo School of Computing

This process can be extended in several ways:
First, the concept of adjacent can be extended to
include wrapping around the edge of the map

Thus, the top square of a column is adjacent to
the bottom square, and the leftmost square of a
row is adjacent to the rightmost square

Second, we can group not just 2 squares but 2n

adjacent squares, that is, 4, 8, etc

Simplified Labeling of Karnaugh Maps

36© 2009, University of Colombo School of Computing

1

1

CD

AB

Your turn: Karnaugh Maps

37© 2009, University of Colombo School of Computing

1

1

CD

AB BCD

Answer: Karnaugh Maps

38© 2009, University of Colombo School of Computing

11

CD

AB

Your turn: Karnaugh Maps

39© 2009, University of Colombo School of Computing

11

CD

AB ABD

Answer: Karnaugh Maps

40© 2009, University of Colombo School of Computing

11 1 1

CD

AB

Your turn: Karnaugh Maps

41© 2009, University of Colombo School of Computing

11 1 1

CD

AB AB

Answer: Karnaugh Maps

42© 2009, University of Colombo School of Computing

11

1 1

CD

AB

Your turn: Karnaugh Maps

43© 2009, University of Colombo School of Computing

11

1 1

CD

AB BC

Answer: Karnaugh Maps

44© 2009, University of Colombo School of Computing

1

11 1 1

1 1 1

CD

AB

Your turn: Karnaugh Maps

45© 2009, University of Colombo School of Computing

1

11 1 1

1 1 1

CD

AB A

Answer: Karnaugh Maps

46© 2009, University of Colombo School of Computing

11

11

1

11

1

CD

AB

Your turn: Karnaugh Maps

47© 2009, University of Colombo School of Computing

11

11

1

11

1

CD

AB C

Answer: Karnaugh Maps

48© 2009, University of Colombo School of Computing

In attempting to simplify, first look for the largest
grouping possible:

When you are circling groups, you are allowed to
use the same 1 more than once
If any isolated 1s remain after the groupings, then
each of these is circled as a group of 1s

Finally, before going from the map to a simplified
Boolean expression, any group of 1s that is
completely overlapped by other groups can be
eliminated

Simplified Labeling of Karnaugh Maps

49© 2009, University of Colombo School of Computing

1

11
00 01 11 10

BC

0

1
A

F = AB + BC 1

11

1

00 01 11 10

CD

00

01

11

10

AB

F = BCD +ACD

Karnaugh Maps: Overlapping Groups

50© 2009, University of Colombo School of Computing

1111

1011

1

00 0 0

0 0 0

CD

AB

Your turn: Karnaugh Maps

51© 2009, University of Colombo School of Computing

1111

1011

1

00 0 0

0 0 0

CD

AB

F = AC + AB + BCD

F = (A+C).(A+B).(B+C+D)

Answer: Karnaugh Maps

52© 2009, University of Colombo School of Computing

Drawing a Circuit

53© 2009, University of Colombo School of Computing

B+AC

Drawing a Circuit

54© 2009, University of Colombo School of Computing

B+AC

Drawing a Circuit

55© 2009, University of Colombo School of Computing

Logic Operators

56© 2009, University of Colombo School of Computing

Logic Operations

Basic logic operators and logic gates

Boolean algebra

Combinational Circuits

Basic circuit design

57© 2009, University of Colombo School of Computing

Basic Logic Operators and Logic Gates

AND

OR

NOT

XOR (Exclusive OR)

NOR

NAND

XNOR

© 2009, University of Colombo School of Computing

A B

0 0

1 1

Buffer

© 2009, University of Colombo School of Computing

. Operator
^ Operator
A . B = A ^ B

A B A . B

0 0 0

0 1 0

1 0 0

1 1 1

AND Operation

© 2009, University of Colombo School of Computing

+ Operator
v Operator
A + B = A v B

A B A + B

0 0 0

0 1 1

1 0 1

1 1 1

OR Operation

© 2009, University of Colombo School of Computing

~ Operator
¬ Operator A A’

0 1

1 0

NOT Operation

'~ AAAA ==¬=

© 2009, University of Colombo School of Computing

Operator

A B

0 0 0

0 1 1

1 0 1

1 1 0

XOR Operation

BA⊕
BA⊕

© 2009, University of Colombo School of Computing

A B

0 0 1

0 1 1

1 0 1

1 1 0

NAND Operation

)'.().(BABA =).(BA

© 2009, University of Colombo School of Computing

A B

0 0 1

0 1 0

1 0 0

1 1 0

NOR Operation

)'()(BABA +=+)(BA+

© 2009, University of Colombo School of Computing

A B

0 0 1

0 1 0

1 0 0

1 1 1

XNOR Operation

)(BA⊕)(BA⊕

66© 2009, University of Colombo School of Computing

In addition to the basic gates, gates with 3,4, or
more inputs can be used

E.g. x + y + z can be implemented with a single
OR gate with 3 inputs

Drawing Logic Gates

© 2009, University of Colombo School of Computing

Drawing Logic Gates

CBAX)(+=

© 2009, University of Colombo School of Computing

Drawing Logic Gates

DCBAX ++=).(

© 2009, University of Colombo School of Computing

Drawing Logic Gates

).().(CABAX +=

© 2009, University of Colombo School of Computing

Drawing Logic Gates

CDCBAX).).((++=

71© 2009, University of Colombo School of Computing

Reducing the number of inputs

The number of inputs to a gate can be reduced by
connecting two (or more) inputs together

The diagram shows a 3-input AND gate operating
as a 2-input AND gate

Reducing Logic Gates

72© 2009, University of Colombo School of Computing

Reducing the number of inputs

Reducing a NOT gate from a NAND or NOR gate

The diagram shows this for a 2-input NAND gate

Reducing Logic Gates

73© 2009, University of Colombo School of Computing

Typically, not all gate types are used in
implementation

Design and fabrication are simpler if only one or
two types of gates are used

Therefore, it is important to identify functionally
complete sets of gates

This means that any Boolean function can be
implemented using only the gates in the set

Logic Gates

74© 2009, University of Colombo School of Computing

The following are functionally complete sets:

AND, OR, NOT

AND, NOT

OR, NOT

NAND

NOR

Logic Gates

75© 2009, University of Colombo School of Computing

AND, OR, and NOT gates constitute a functionally
complete set, since they represent the 3 operations of
Boolean algebra

For the AND and NOT gates to form a functionally
complete set, there must be a way to synthesize the OR
operation from the AND and NOT operations

A + B = A . B
A OR B = NOT((NOT A) AND (NOT B))

Logic Gates

76© 2009, University of Colombo School of Computing

Similarly, the OR and NOT operations are functionally
complete because they can be synthesize the AND
operation

A . B = A + B
A AND B = NOT((NOT A) OR (NOT B))

Logic Gates

77© 2009, University of Colombo School of Computing

The AND, OR and NOT functions can be
implemented solely with NAND gates, and the same
thing for NOR gates.

For this reason, digital circuits can be, and frequently
are, implemented solely with NAND gates or solely
with NOR gates

Logic Gates

78© 2009, University of Colombo School of Computing

The diagram shows how the NOT function can be
implemented solely with NAND gate

AA AA

Logic Gates

79© 2009, University of Colombo School of Computing

The diagram shows how the AND function can be
implemented solely with NAND gate

AA A A .. BB

BB
A

A . BA . B

Logic Gates

80© 2009, University of Colombo School of Computing

The diagram shows how the OR function can be
implemented solely with NAND gate

AA
AA

BB
BB

A + BA + B

Logic Gates

81© 2009, University of Colombo School of Computing

Gate Equivalent in NAND gates

NOT

AND

OR

NOR

Logic Gates

82© 2009, University of Colombo School of Computing

Draw a diagram that shows how the NOT function
can be implemented solely with NOR gate

Your turn

83© 2009, University of Colombo School of Computing

The diagram shows how the NOT function can be
implemented solely with NOR gate

AA AA

Logic Gates

84© 2009, University of Colombo School of Computing

Draw a diagram that shows how the OR function
can be implemented solely with NOR gate

Your turn

85© 2009, University of Colombo School of Computing

The diagram shows how the OR function can be
implemented solely with NOR gate

AA A + BA + B

BB

A + BA + B

Logic Gates

86© 2009, University of Colombo School of Computing

Draw a diagram that shows how the AND function
can be implemented solely with NOR gate

Your turn

87© 2009, University of Colombo School of Computing

The diagram shows how the AND function can be
implemented solely with NOR gate

AA
AA

BB
BB

A A . . BB

Logic Gates

88© 2009, University of Colombo School of Computing

Substituting Gates in an Logic System

89© 2009, University of Colombo School of Computing

Substituting Gates in an Logic System

90© 2009, University of Colombo School of Computing

Substituting Gates in an Logic System

91© 2009, University of Colombo School of Computing

Combinational Circuits

92© 2009, University of Colombo School of Computing

Combinational Logic

Also called combinatorial logic

A type of logic circuit whose output is a function of
the present input only

93© 2009, University of Colombo School of Computing

Half Adder

Finds the sum of two bitsFinds the sum of two bits

The sum can be found The sum can be found
using the XOR operation using the XOR operation
and the carry using the and the carry using the
AND operationAND operation

94© 2009, University of Colombo School of Computing

Full Adder
We can change our half adder into to a full adder by
including gates for processing the carry bit
The truth table for a full adder is:

95© 2009, University of Colombo School of Computing

Converting a Half Adder into a Full AdderConverting a Half Adder into a Full Adder

96© 2009, University of Colombo School of Computing

Ripple-carry Adder (I)

Just as we combined half adders to make a full adder, Just as we combined half adders to make a full adder,
full adders can be connected in seriesfull adders can be connected in series

The carry bit “ripples” from one adder to the next;
hence, this configuration is called a ripple-carry adder

O0O1O15

97© 2009, University of Colombo School of Computing

Ripple-carry Adder (II)

1/2

Digits of
first number

Digits of
second number

1/2

1/2

1/2

1/2

1/2

1/2

Carry

Sum

98© 2009, University of Colombo School of Computing

Adder

++

Adders (and other Adders (and other
arithmetic circuits) arithmetic circuits)
are usually drawn are usually drawn
like this in block like this in block

diagramsdiagrams

A3A3--A0A0 B3B3--B0B0

out3out3--out0out0

inputsinputs

outputoutput
collections of parallel, collections of parallel,

related wires like this are related wires like this are
known as known as busesbuses; they carry ; they carry
multimulti--bit values between bit values between

componentscomponents

99© 2009, University of Colombo School of Computing

Decoder

Selects a memory location according a binary value
placed on the address lines of a memory bus

Decoders with n inputs can select any of 2n locations

100© 2009, University of Colombo School of Computing

2-to-4 Decoder

If x = 0 and y = 1,
which output line
is enabled?

101© 2009, University of Colombo School of Computing

Multiplexer
A multiplexer does the opposite of a decoder

Selects a single output from several inputs
The particular input chosen for output is determined
by the value of the multiplexer’s control lines

To select among n inputs, log2n control lines are
needed

102© 2009, University of Colombo School of Computing

4-to-1 Multiplexer

If S0 = 1 and S1 = 0,
which input is
selected as output?

103© 2009, University of Colombo School of Computing

Arithmetic

• Computers need to do more than just addition
– arithmetic: + – * / %

– logic: & | ~ << >>

• Need a circuit that can select operation to perform

104© 2009, University of Colombo School of Computing

Arithmetic Logic Unit (ALU)

++ ** && <<<<

MUXMUX

op op
00

op op
11

op op
22

op op
33

opop

outout

AA BB

MultiplexerMultiplexer: a : a
combinatorial combinatorial
circuit which circuit which

selects exactly selects exactly
one inputone input

op selects operation:op selects operation:
0 = add, 1 = multiply, ...0 = add, 1 = multiply, ...

more more
operations operations

herehere

00 11 22 33

105© 2009, University of Colombo School of Computing

Arithmetic Logic Unit (ALU)

++ ** && <<<<

MUXMUX

op op
00

op op
11

op op
22

op op
33

op = 3op = 3

out = 60out = 60

A = 15A = 15 B = 2B = 2

other results also other results also
computed but computed but

ignored by ignored by
multiplexermultiplexer

more more
operations operations

herehere

for for
example: example:
compute compute
15 << 215 << 2

00 11 22 33

106© 2009, University of Colombo School of Computing

Sequential Logic Sequential Logic –– MemoryMemory

107© 2009, University of Colombo School of Computing

Sequential Logic Circuits
Combinational logic circuits are perfect for situations
which require the immediate application of a Boolean
function to a set of inputs

But, here are times when we need a circuit to change
its value with consideration to its current state as well
as its inputs

These circuits have to “remember” their current
state

Sequential logic circuits provide this functionality

108© 2009, University of Colombo School of Computing

Sequencing Events
Sequential logic circuits require a means by which
events can be sequenced

State changes are controlled by clocks
• A “clock” is a special circuit that sends electrical

pulses through a circuit

Clocks produce electrical waveforms such as this one

State changes occur in sequential circuits only when
the clock ticks

109© 2009, University of Colombo School of Computing

Feedback in Sequential Logic Circuits
Sequential circuits rely on feedback to retain their
state values
Feedback in digital circuits occurs when an output is
looped back to the input

Example,

If Q is 0 it will always be 0, if it is 1, it will always
be 1

110© 2009, University of Colombo School of Computing

SR Flip-flop (Set-Reset) (I)

• The behavior of an SR flip-
flop is described by a
characteristic table
– Q(t) output at time t

– Q(t+1) output after the
next clock pulse

111© 2009, University of Colombo School of Computing

SR Flip-flop: Block Diagram

SS QQ

RR

FlipFlip--flops are often flops are often
drawn like this in drawn like this in
block diagramsblock diagrams

S and R S and R
inputinput

CK is read/write (CK is read/write (““clockclock””
because this input is because this input is

connected to the computerconnected to the computer’’s s
processor clock)processor clock)

CKCK

QQ

Q and = Q and =
outputoutput

Q Q

112© 2009, University of Colombo School of Computing

SR Flip-flop (II)

The SR flip-flop has three inputs: S, R and Q(t)
When both S and R are 1, the SR flip-flop is unstable

113© 2009, University of Colombo School of Computing

JK Flip-flop (Jack Kilby)
Modified version of the SR flip-flop to provide a stable
state when both inputs are 1

114© 2009, University of Colombo School of Computing

JK Flip-flop: Binary Counter
The low-order bit is
complemented at each
clock pulse
Whenever it changes from
1 to 0, the next bit is
complemented, and so on
through the other flip-flops

115© 2009, University of Colombo School of Computing

D Flip-flop (Data)

Fundamental circuit of computer memory

Used to store 1 bit

Can be implemented with gates

Not combinatorial logic

because current output may depend on previous
state

Example of sequential logic

current output depends on inputs and prior output

116© 2009, University of Colombo School of Computing

D Flip-flop

read/writeread/write

data indata in

data outdata out

read/write control: read/write control:
0 = read, 1 = write0 = read, 1 = write

NOR gate: OR gate NOR gate: OR gate
followed by NOT gatefollowed by NOT gate

117© 2009, University of Colombo School of Computing

D Flip-flop: Writing

read/write = 1 read/write = 1
(write)(write)

data in = 1data in = 1

data out = 1data out = 1

11

11
11

00
00

11

11
00

11
00

11

when read/write = 1, when read/write = 1,
data out = data indata out = data in

Try changing data in to 0 Try changing data in to 0
and watch data outand watch data out

118© 2009, University of Colombo School of Computing

D Flip-flop: Reading

read/write = 0 read/write = 0
(read)(read)

data in = ?data in = ?

data out = 1data out = 1

??

??
00

??
00

00

00

00

11
00

11

when read/write = 0, no signals when read/write = 0, no signals
in box can change in box can change ––-- data out data out

holds value regardless of data inholds value regardless of data in

119© 2009, University of Colombo School of Computing

D Flip-flop: Block Diagram

DD QQ

CKCK

Q = data Q = data
outout

D = data D = data
inin

CK is read/write (CK is read/write (““clockclock””
because this input is often because this input is often

connected to the computerconnected to the computer’’s s
processor clock)processor clock)

120© 2009, University of Colombo School of Computing

D Flip-flop: 4-bit Register

A register stores data
inside the CPU

121© 2009, University of Colombo School of Computing

Memory

• Memory can store many bits independently

– register banks contain many flip-flops

• Need to identify which bit (flip-flop) to read or write

• Give each flip-flop a unique number (address)

122© 2009, University of Colombo School of Computing

Memory: Circuit Diagram

DD

CKCK

QQ

DD

CKCK

QQ

DD

CKCK

QQ

DD

CKCK

QQ

00

11

22

33

......

00

11

22

33

......

. . . millions more flip. . . millions more flip--flops . . flops . .
..

M
UX

M
UX

D
EC

D
EC

address 0address 0

address 1address 1

address 2address 2

address 3address 3

data indata in

addressaddress

rd/rd/wrwr

data data
outout

Decoder: feeds input to selected output, 0 to all othersDecoder: feeds input to selected output, 0 to all others

123© 2009, University of Colombo School of Computing

Memory: Writing

DD

CKCK

QQ

DD

CKCK

QQ

DD

CKCK

QQ

DD

CKCK

QQ

00

11

22

33

......

00

11

22

33

......

. . . millions more flip. . . millions more flip--flops . . flops . .
..

M
UX

M
UX

D
EC

D
EC

address 0address 0

address 1address 1

address 2address 2

address 3address 3

data indata in

addressaddress

data data
outout

00

22

11

Writing value Writing value
1 to flip1 to flip--flop flop
at address 2at address 2

1111

00

00

11

11

11

11

11

rd/rd/wrwr

124© 2009, University of Colombo School of Computing

Memory: Reading

DD

CKCK

QQ

DD

CKCK

QQ

DD

CKCK

QQ

DD

CKCK

QQ

00

11

22

33

......

00

11

22

33

......

. . . millions more flip. . . millions more flip--flops . . flops . .
..

M
UX

M
UX

D
EC

D
EC

address 0address 0

address 1address 1

address 2address 2

address 3address 3

data indata in

addressaddress

rd/rd/wrwr

data data
outout

00

22

Reading Reading
value from value from
flipflip--flop at flop at
address 2address 2

1111

00

00

00

11 11
00

We just wrote We just wrote
this valuethis value

125© 2009, University of Colombo School of Computing

Memory: 4-words, 3 bits/word

126© 2009, University of Colombo School of Computing

Summary (I)
Computers are implementations of Boolean logic

Boolean functions are completely described
by Truth Tables

Logic gates are small circuits that implement Boolean
operators

The basic gates are AND, OR and NOT

The “universal gates” are NOR and NAND

127© 2009, University of Colombo School of Computing

Summary (II)
Computer circuits consist of combinational logic
circuits and sequential logic circuits

Combinational circuits produce outputs (almost)
immediately when their inputs change

Sequential circuits have internal states as well as
combinations of input and output logic

The outputs may also depend on the states left behind
by previous inputs

Sequential circuits require clocks to control their
changes of state

The basic sequential circuit unit is the flip-flop

128© 2009, University of Colombo School of Computing

Thank You

