
© 2009, University of Colombo School of Computing 1

IT 1204
Section 2.0

Data Representation and Arithmetic

© 2009, University of Colombo School of Computing 2

What is Analog and Digital

The interpretation of an analog signal would correspond
to a signal whose key characteristic would be a
continuous signal

A digital signal is one whose key characteristic (e.g.
voltage or current) fall into discrete ranges of values

Most digital systems utilize two voltage levels

© 2009, University of Colombo School of Computing 3

Advantage of Digital over Analog

© 2009, University of Colombo School of Computing 4

A bit is a binary digit, the smallest increment of data on a
machine. A bit can hold only one of two values: 0 or 1

Because bits are so small, you rarely work with
information one bit at a time.

What is a bit

© 2009, University of Colombo School of Computing 5

Data

Real
World
Problem

Model Information

Knowledge

101100010010011

Abstract
to

Apply to

Algorithm

Machine

Operate on

Encode as

Interpret as

Leading
to

Use to

make

1.
2.
3.

Code for

What is a bit

© 2009, University of Colombo School of Computing 6

plates discharged plates charging plates charged

plates discharging plates discharged

1 2 3

4 5

Can store 1
of 2 possible
states

Bit Storage - Capacitor

© 2009, University of Colombo School of Computing 7

Byte is an abbreviation for "binary term". A single byte is
composed of 8 consecutive bits capable of storing a single
character

What is a bit

© 2009, University of Colombo School of Computing 8

8 Bits = 1 Byte

1024 Bytes = 1 Kilobyte (KB)

1024 KB = 1 Megabyte (MB)

1024 MB = 1 Gigabyte (GB)

A word is the default data size for a processor

Storage Hierarchy

© 2009, University of Colombo School of Computing 9

Decimal System
Alphabet = { 0,1,2,3,4,5,6,7,8,9 }

Octal System
Alphabet = { 0,1,2,3,4,5,6,7 }

Hexadecimal System
Alphabet = { 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F }

Binary System
Alphabet = { 0,1 }

Numbering System

© 2009, University of Colombo School of Computing 10

123 1111011
÷2
61 → remainder 1
÷2
30 → remainder 1
÷2
15 → remainder 0
÷2
7 → remainder 1

÷2
3 → remainder 1

÷2
1 → remainder 1

÷2
0 → remainder 1

Converting decimal to binary

© 2009, University of Colombo School of Computing 11

123 1111011
÷2
61 → remainder 1
÷2
30 → remainder 1
÷2
15 → remainder 0
÷2
7 → remainder 1

÷2
3 → remainder 1

÷2
1 → remainder 1

÷2
0 → remainder 1 Most

significant
bit

Converting decimal to binary

© 2009, University of Colombo School of Computing 12

123 1111011
÷2
61 → remainder 1
÷2
30 → remainder 1
÷2
15 → remainder 0
÷2
7 → remainder 1

÷2
3 → remainder 1

÷2
1 → remainder 1

÷2
0 → remainder 1

Converting decimal to binary

Least
significant

bit

© 2009, University of Colombo School of Computing 13

Convert the number 6510 to binary

Your turn

© 2009, University of Colombo School of Computing 14

25 20212223242627

01234567

Bit position

Decimal value

Converting binary to decimal

© 2009, University of Colombo School of Computing 15

3232 1122448816166464128128

01234567

Bit position

Decimal value

Converting binary to decimal

© 2009, University of Colombo School of Computing 16

Example:Example:
Convert the unsigned binary number 1001101010011010 to
decimal

01011001

Converting binary to decimal

© 2009, University of Colombo School of Computing 17

01011001

2021222324252627

01234567

Converting binary to decimal

© 2009, University of Colombo School of Computing 18

01011001

01234567

64 12481632128

Converting binary to decimal

© 2009, University of Colombo School of Computing 19

01011001

01234567

64 12481632128

128 + 16 + 8 + 2128 + 16 + 8 + 2 = 154154

So, 10011010 in unsigned binary is 154 in
decimal

Converting binary to decimal

© 2009, University of Colombo School of Computing 20

Example:Example:
Convert the decimal number 105 to unsigned
binary

Converting binary to decimal

© 2009, University of Colombo School of Computing 21

Q. Does 128 fit into 105?

A. No

Next, consider the difference: 105- 0*128 = 105

64 12481632

0123456

128

7

0

Converting binary to decimal

© 2009, University of Colombo School of Computing 22

Q. Does 64 fit into 105?

A. Yes

Next, consider the difference: 105- 1*64 = 41

1

64 12481632

0123456

128

7

0

Converting binary to decimal

© 2009, University of Colombo School of Computing 23

Q. Does 32 fit into 41?

A. Yes

Next, consider the difference: 41- 32 = 9

1

64 12481632

1
0123456

128

7

0

Converting binary to decimal

© 2009, University of Colombo School of Computing 24

Convert the number 001100102 to decimal

Your turn

© 2009, University of Colombo School of Computing 25

Decimal System

0,1,2,3,4,5,6,7,8,9,10,11,12,13……

Binary System

0,1,10,11,100,101,110,111,1000,1001,1010,1011
,1100,1101…...

Converting binary numbers

© 2009, University of Colombo School of Computing 26

Using 5 binary digits how many numbers you
can represent?

Your turn

© 2009, University of Colombo School of Computing 27

HEX Bit Pattern HEX Bit Pattern
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Hexadecimal Notation

© 2009, University of Colombo School of Computing 28

How many binary digits need to represent a
hexadecimal digit?

Your turn

© 2009, University of Colombo School of Computing 29

Decimal System

0,1,2,3,4,5,6,7,8,9,10,11,12,13……

Hexadecimal System

0,1,,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13,14,15,
16,17,18,19,1A,1B,1C,1D,1E,1F…...

Converting hexadecimal numbers

© 2009, University of Colombo School of Computing 30

• 100101102

• 1001 0110
• 1001 0110
• 9 6

100101102 = 96 Hexadecimal

Binary to Hexadecimal Conversion

© 2009, University of Colombo School of Computing 31

• 110110112

• 1101 1011
• 1101 1011
• D B

110110112 = DB Hexadecimal

Binary to Hexadecimal Conversion

© 2009, University of Colombo School of Computing 32

Convert the following binary string to Hexadecimal ...

00101001

11110101

Your turn

© 2009, University of Colombo School of Computing 33

•00101001 11101012

• 00101001 11110101

• 0010 1001 1111 0101
2 9 F 5

00101001 11101012 = 29F5 Hex

Binary to Hexadecimal Conversion

© 2009, University of Colombo School of Computing 34

Computer Number System

© 2009, University of Colombo School of Computing 35

American Standard Code for Information Interchange
(ASCII)

Use bit patterns of length seven to represent
Letters of English alphabet: a - z and A - Z
Digits: 0 – 9
Punctuation symbols: (,), [,], {, }, ’, ”, !, /, \
Arithmetic Operation symbols: +, -, *, <, >, =
Special symbols: (space), %, $, #, &, @, ^

27 = 128 characters can be represented by ASCII

ASCII Codes

© 2009, University of Colombo School of Computing 36

00110000001100001a01000001A00100000(space)

…….…….……..…….

00110110601100111g01000111G00100110&

00110101501100110f01000110F00100101%

00110100401100101e01000101E00100100$

00110011301100100d01000100D00100011#

00110010201100011c01000011C00100010“

00110001101100010b01000010B00100001!

ASCIISymbolASCIISymbolASCIISymbolASCIISymbol

Character Representation: ASCII Table

© 2009, University of Colombo School of Computing 37

Character Representation: ASCII Table

© 2009, University of Colombo School of Computing 38

Character Representation: ASCII Table
As computers became more reliable the need for parity bit
faded.

Computer manufacturers extended ASCII to provide more
characters, e.g., international characters
Used ranges (27) 128 ↔ 255 (28 - 1)

© 2009, University of Colombo School of Computing 39

• The BINARY string ...

• 0110101 can have two meanings!

• the CHARACTER “5” in ASCII

• AND ...

• the DECIMAL NUMBER 53 in
BINARY Notation

Your turn

© 2009, University of Colombo School of Computing 40

EBCDIC and ASCII are built around the Latin alphabet

Are restricted in their ability for representing non-
Latin alphabet

Countries developed their own codes for native
languages

Unicode: 16-bit system that can encode the characters
of most languages

16 bits = 216 = 65,636 characters

Character Representation: Unicode

© 2009, University of Colombo School of Computing 41

The Java programming language and some operating
systems now use Unicode as their default character
code

Unicode codespace is divided into six parts

The first part is for Western alphabet codes,
including English, Greek, and Russian

Downward compatible with ASCII and Latin-1 character
sets

Character Representation: Unicode

© 2009, University of Colombo School of Computing 42

Character Representation: Unicode

© 2009, University of Colombo School of Computing 43

English section of Unicode Table
ACSII equivalent of A is 4116

Unicode is equivalent of A:
• 00 4116

Full chart list:
http://www.unicode.org/charts/

Character Representation: Example

© 2009, University of Colombo School of Computing 44

Performing Arithmetic

© 2009, University of Colombo School of Computing 45

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10 (carry: 1)

• E.g.
1 1 1 1 1 (carry)

0 1 1 0 1
+ 1 0 1 1 1
= 1 0 0 1 0 0

Binary Addition

© 2009, University of Colombo School of Computing 46

0 - 0 = 0
0 - 1 = 1 (with borrow)
1 - 0 = 1
1 - 1 = 0

• E.g.
* * * (borrow)
1 0 1 1 0 1

- 0 1 0 1 1 1
= 0 1 0 1 1 0

Binary Subtraction

© 2009, University of Colombo School of Computing 47

• E.g.
1 0 1 1

x 1 0 1 0
0 0 0 0

+ 1 0 1 1
+ 0 0 0 0
+ 1 0 1 1
= 1 1 0 1 1 1 0

Binary Multiplication

© 2009, University of Colombo School of Computing 48

• E.g.
1 0 1

1 0 1 1 1 0 1 1
- 1 0 1

0 1 1
- 0 0 0

1 1 1
- 1 0 1

1 0

Binary Division

© 2009, University of Colombo School of Computing 49

Problems of number representation
Positive and negative
Radix point
Range of representation

Different ways to represent numbers
Unsigned representation: non-negative integers
Signed representation: integers
Floating-point representation: fractions

Representing Numbers

© 2009, University of Colombo School of Computing 50

Unsigned binary numbers
Have 0 and 1 to represent numbers

Only positive numbers stored in binary

The Smallest binary number would be …
0 0 0 0 0 0 0 0 which equals to 0

The largest binary number would be …
1 1 1 1 1 1 1 1 which equals ….
128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255 = 28-1

Therefore the range is 0 - 255 (256 numbers)

Unsigned and Signed Numbers

© 2009, University of Colombo School of Computing 51

Signed binary numbers

Have 0 and 1 to represent numbers

The leftmost bit is a sign bit
• 0 for positive

• 1 for negative

Sign bitSign bit

Unsigned and Signed Numbers

© 2009, University of Colombo School of Computing 52

Signed binary numbers
The Smallest positive binary number is

0 0 0 0 0 0 0 0 which equals to 0

The largest positive binary number is
0 1 1 1 1 1 1 1 which equals ….
64 + 32 + 16 + 8 + 4 + 2 + 1 = 127 = 27- 1

Therefore the range for positive numbers is 0 - 127
(128 numbers)

Unsigned and Signed Numbers

© 2009, University of Colombo School of Computing 53

Problems with simple signed representation
Two representation of zero: + 0 and – 0

0 0 0 0 0 0 0 0 and 1 0 0 0 0 0 0 0

Need to consider both sign and magnitude in arithmetic
• E.g. 5 – 3
• = 5 + (-3)
• = 0 0 0 0 0 1 0 1 + 1 0 0 0 0 0 1 1
• = 1 0 0 0 1 0 0 0
• = -8

Negative Numbers in Binary

© 2009, University of Colombo School of Computing 54

Problems with simple signed representation
Need to consider both sign and magnitude in arithmetic
• E.g. = 18 + (-18)
• = 0 0 0 1 0 0 1 0 + 1 0 0 1 0 0 1 0
• = 1 0 1 0 0 1 0 0
• = -36

Negative Numbers in Binary…

© 2009, University of Colombo School of Computing 55

The representation of a negative integer (Two’s
Complement) is established by:

Start from the signed binary representation of its
positive value
Copy the bit pattern from right to left until a 1 has been
copied
Complement the remaining bits: all the 1’s with 0’s, and
all the 0’s with 1’s
An exception: 1 0 0 0 0 0 0 0 = -128

Negative Numbers in Binary…

© 2009, University of Colombo School of Computing 56

What is the SMALLEST and LARGEST signed binary
numbers that can be stored in 1 BYTE

Your turn

© 2009, University of Colombo School of Computing 57

0 1 1 1 1 1 1 1 = +127
.
.

0 0 0 0 0 0 1 1 = +3
0 0 0 0 0 0 1 0 = +2
0 0 0 0 0 0 0 1 = +1
0 0 0 0 0 0 0 0 = 0
1 1 1 1 1 1 1 1 = -1
1 1 1 1 1 1 1 0 = -2
1 1 1 1 1 1 0 1 = -3

.
1 0 0 0 0 0 0 1 = -127
1 0 0 0 0 0 0 0 = -128

Two’s Compliment (8 bit pattern)

© 2009, University of Colombo School of Computing 58

One representation of zero

Arithmetic works easily

Negating is fairly easy

Two’s Compliment benefits

© 2009, University of Colombo School of Computing 59

8-bit unsigned binary representation
Largest number: 1 1 1 1 1 1 1 12 = 25510
Smallest number: 0 0 0 0 0 0 0 02 = 010

8-bit two’s complement representation
Largest number: 0 1 1 1 1 1 1 12 = 12710
Smallest number: 1 0 0 0 0 0 0 02 = -12810

The problem of overflow
13010 = 1 0 0 0 0 0 1 02

0 0 0 0 1 02 in two’s complement

Ranges of Integer Representation

© 2009, University of Colombo School of Computing 60

Geometric Depiction of Two’s Complement Integers

© 2009, University of Colombo School of Computing 61

-2,147,483,648 to 2,147,483,64732long int

0 to 4,294,967,29532unsigned long int

-32768 - 32767 16int

0 – 6553516unsigned int

RangeSize in BitsType

Integer Data Types in C++

© 2009, University of Colombo School of Computing 62

• 16.357 = the SUM of ...

7 * 10-3 = 7/1000
5 * 10-2 = 5/100
3 * 10-1 = 3/10
6 * 100 = 6
1 * 101 = 10

• 7/1000 + 5/100 + 3/10 + 6 + 10 = 16 357/1000

Fractions in Decimal

© 2009, University of Colombo School of Computing 63

• 10.011 = the SUM of ...

1 * 2-3 = 1/8
1 * 2-2 = 1/4
0 * 2-1 = 0
0 * 20 = 0
1 * 21 = 2

• 1/8 + 1/4 + 2 = 2 3/8
• i.e. 10.011 = 2 3/8 in Decimal (Base 10)

Fractions in Binary

© 2009, University of Colombo School of Computing 64

What is 011.0101 in Base 10?

Your turn

© 2009, University of Colombo School of Computing 65

• 011.0101 = the SUM of ...

1 * 2-4 = 1/16
0 * 2-3 = 0
1 * 2-2 = 1/4
0 * 2-1 = 0
1 * 20 = 1
1 * 21 = 2
0 * 22 = 0

• 1/16 + 1/4 + 1 + 2 = 3 5/16

Fractions in Binary

© 2009, University of Colombo School of Computing 66

Consider the following representation in decimal
number …

135.26 = .13526 x 103

13526000 = .13526 x 108

0.0000002452 = .2452 x 10-6

.13526 x 103 has the following components:
a Mantissa = .13526
an Exponent = 3
a Base = 10

Decimal Scientific Notation

© 2009, University of Colombo School of Computing 67

Scientific notation for binary. Examples …

11011.101 = 1.1011101 x 24

-10110110000 = -1.011011 x 210

0.00000010110111 = 1.0110111 x 2-7

Floating Point Representation of
Fractions

© 2009, University of Colombo School of Computing 68

MANTISSA

EXPONENTEXPONENT

SIGNSIGN

RADIX POINTRADIX POINT

SIGN = 00 (+ve) | 11 (-ve)
EXPONENT in EXCESS FOUR EXCESS FOUR Notation

Floating Point Format in 1 Byte

© 2009, University of Colombo School of Computing 69

•To STORE the number ...
+11/8 = 1.001

in FLOATING POINT NOTATION ...

1. STORE the SIGN BIT

Floating Point Format in 1 Byte

© 2009, University of Colombo School of Computing 70

•To STORE the number ...
+11/8 = 1.001

in FLOATING POINT NOTATION ...

1. STORE the SIGN BIT

00

Floating Point Format in 1 Byte

© 2009, University of Colombo School of Computing 71

•To STORE the number ...
+11/8 = 1.001

in FLOATING POINT NOTATION ...

2. STORE the MANTISSA BITS

00

Floating Point Format in 1 Byte

© 2009, University of Colombo School of Computing 72

•To STORE the number ...
+11/8 = 1.001

in FLOATING POINT NOTATION ...

2. STORE the MANTISSA BITS

00 00 00 11 00

Floating Point Format in 1 Byte

© 2009, University of Colombo School of Computing 73

•To STORE the number ...
+11/8 = 1.001

in FLOATING POINT NOTATION ...

3. STORE the EXPONENT BITS

00 00 00 11 00

Floating Point Format in 1 Byte

© 2009, University of Colombo School of Computing 74

Bit Pattern Value Representation
111 4
110 3
101 2
100 1
011 0
010 -1
001 -2
000 -3

EXCESS THREE NOTATION
An excess notation system using bit pattern of length three

Excess-k Representation

© 2009, University of Colombo School of Computing 75

For N bit numbers, k is 2N-1-1
– E.g., for 4-bit integers, k is 7
The actual value of each bit string is its

unsigned value minus k
To represent a number in excess-k, add k

Excess-k Representation

© 2009, University of Colombo School of Computing 76

Excess-k Representation

• 0000....................
0001....................
0010....................
0011....................
0100....................
0101....................
0110....................
0111....................
1000....................
1001....................
1010....................
1011....................
1100....................
1101....................
1110....................
1111....................

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8

k = 7

Unsigned Excess-k

sliding
ruler

© 2009, University of Colombo School of Computing 77

•To STORE the number ...
+11/8 = 1.001

in FLOATING POINT NOTATION ...

3. STORE the EXPONENT BITS

00 00 11 11 00 00 11 00

Floating Point Format in 1 Byte

© 2009, University of Colombo School of Computing 78

•To STORE the number ...
-31/4 = -11.01

in FLOATING POINT NOTATION ...

1. STORE the SIGN BIT

Floating Point Format in 1 Byte

© 2009, University of Colombo School of Computing 79

•To STORE the number ...
-31/4 = -11.01

in FLOATING POINT NOTATION ...

1. STORE the SIGN BIT

11

Floating Point Format in 1 Byte

© 2009, University of Colombo School of Computing 80

•To STORE the number ...
-31/4 = -11.01

in FLOATING POINT NOTATION ...

2. STORE the MANTISSA BITS

11

Floating Point Format in 1 Byte

© 2009, University of Colombo School of Computing 81

•To STORE the number ...
-31/4 = -11.01

in FLOATING POINT NOTATION ...

2. STORE the MANTISSA BITS

11 11 00 11 00

Floating Point Format in 1 Byte

© 2009, University of Colombo School of Computing 82

•To STORE the number ...
-31/4 = -11.01

in FLOATING POINT NOTATION ...

3. STORE the EXPONENT BITS

11 11 11 00 11

Floating Point Format in 1 Byte

© 2009, University of Colombo School of Computing 83

•To STORE the number ...
-31/4 = -11.01

in FLOATING POINT NOTATION ...

3. STORE the EXPONENT BITS

11 11 00 00 11 11 00 11

Floating Point Format in 1 Byte

© 2009, University of Colombo School of Computing 84

Write down the FLOATING POINT
form for the number +11/64 ?

Your turn

© 2009, University of Colombo School of Computing 85

1. STORE the SIGN BIT

SOLUTION: +11/64 (.001011)

© 2009, University of Colombo School of Computing 86

1. STORE the SIGN BIT

00

SOLUTION: +11/64 (.001011)

© 2009, University of Colombo School of Computing 87

2. STORE the MANTISSA BITS

00

SOLUTION: +11/64 (.001011)

© 2009, University of Colombo School of Computing 88

2. STORE the MANTISSA BITS

00 00 11 11 00

SOLUTION: +11/64 (.001011)

© 2009, University of Colombo School of Computing 89

3. STORE the EXPONENT BITS

00 00 00 00 11 00 11 11

SOLUTION: +11/64 (.001011)

© 2009, University of Colombo School of Computing 90

•Example ...
•CONVERT 10111010 to decimal steps ...

1. Convert EXPONENT (EXCESS 4)

2. Apply EXPONENT to MANTISSA

3. Convert BINARY Fraction

4. Apply SIGN

Converting FP Binary to Decimal

© 2009, University of Colombo School of Computing 91

1. CONVERT THE EXPONENT

0 1 11 1 0 1 0

0 1 1 3 3 -- 3 = 03 = 0

SOLUTION: 10111010

© 2009, University of Colombo School of Computing 92

0 1 11 1 0 1 0

2. APPLY the EXPONENT to the MANTISSA

1 0 1 01

SOLUTION: 10111010

© 2009, University of Colombo School of Computing 93

0 1 11 1 0 1 0

3. CONVERT from BINARY FRACTION

1 0 1 01 11 ++ 11//22 + + 11//88 = 1 = 1 55//88

SOLUTION: 10111010

© 2009, University of Colombo School of Computing 94

0 1 11 1 0 1 0

4. APPLY the SIGN

((1 +1 + 11//22 + + 11//88) =) = -- 1 1 55//88--

SOLUTION: 10111010

© 2009, University of Colombo School of Computing 95

•CONSIDER the FLOATING
POINT Form of the number...

+ 2 5/16

ROUND-OFF ERRORS

© 2009, University of Colombo School of Computing 96

1. CONVERT to BINARY FRACTION ...
25/8 = 10.0101

i.e. 2 + 1/4 + 1/16

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88

© 2009, University of Colombo School of Computing 97

2. STORE THE SIGN BIT ...

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101

© 2009, University of Colombo School of Computing 98

2. STORE THE SIGN BIT ...

0

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101

© 2009, University of Colombo School of Computing 99

3. STORE THE MANTISSA ...

0

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101

© 2009, University of Colombo School of Computing 100

3. STORE THE MANTISSA ...

0 0 0 1 0 1

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101

© 2009, University of Colombo School of Computing 101

3. STORE THE MANTISSA ...

0 0 0 1 0 1

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101

© 2009, University of Colombo School of Computing 102

3. STORE THE MANTISSA ...

0 0 0 1 0

1

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101

© 2009, University of Colombo School of Computing 103

4. STORE THE EXPONENT ...

0 0 0 1 0

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101

© 2009, University of Colombo School of Computing 104

4. STORE THE EXPONENT ...

0 0 0 1 01 0 0

Converting this back to DECIMAL we get ...

21/4 i.e. a ROUND OFF ERROR of 1/16

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101

© 2009, University of Colombo School of Computing 105

What is the BIGGEST and SMALLEST
can be represented by one-byte floating
point notation

Range of FP Representation

© 2009, University of Colombo School of Computing 106

The biggest number can be represented by one-byte
floating point notation is:

= +1.1111 x 24 = +11111 = +31

0 1 1 1 11 1 1

Range of FP Representation

© 2009, University of Colombo School of Computing 107

The Smallest positive number can be represented by
one-byte floating point notation is:

= +1.0000 x 2-3 = +.001 = +1/8

0 0 0 0 00 0 0

Range of FP Representation

© 2009, University of Colombo School of Computing 108

The largest negative number can be represented by
one-byte floating point notation is:

= -1.0000 x 2-3 = -.001 = -1/8

1 0 0 0 00 0 0

Range of FP Representation

© 2009, University of Colombo School of Computing 109

The smallest number can be represented by one-byte
floating point notation is:

= -1.1111 x 24 = -11111 = -31

1 1 1 1 11 1 1

Range of FP Representation

© 2009, University of Colombo School of Computing 110

What is the SOLUTION for this???

Range of FP Representation

© 2009, University of Colombo School of Computing 111

3.4E-4932 to 3.4E+4932
Ten digits of precision

80long double

1.7E-308 to 1.7E+308
Ten digits of precision

64double

3.4E-38 to 3.4E+38
Six digits of precision

32float

RangeSize in BitsType

Floating-Point Data types in C++

© 2009, University of Colombo School of Computing 112

Si
gn

 b
it

Si
gn

 b
it

BiasedBiased
ExponentExponent

Significand or MantissaSignificand or Mantissa

+/- . Mantissa x 2 exponent

Point is actually fixed between sign bit and body of
Mantissa

Exponent indicates place value (point position)

Floating-Point Representation

© 2009, University of Colombo School of Computing 113

Mantissa is stored in 2’s compliment

Exponent is in excess notation
8 bit exponent field
Pure range is 0 – 255
Subtract 127 to get correct value
Range -127 to +128

Floating-Point Representation

© 2009, University of Colombo School of Computing 114

Floating Point numbers are usually normalized
i.e. exponent is adjusted so that leading bit (MSB) of
mantissa is 1
Since it is always 1 there is no need to store it
Where numbers are normalized to give a single digit
before the decimal point

E.g. 3.123 x 103

Floating-Point Representation

© 2009, University of Colombo School of Computing 115

Floating-Point Representation

© 2009, University of Colombo School of Computing 116

Floating Point Representation:
Expressible Numbers

© 2009, University of Colombo School of Computing 117

Representing the Mantissa

The mantissa has to be in the range
1 ≤ mantissa < base

Therefore
If we use base 2, the digit before the point must be a 1
So we don't have to worry about storing it

We get 24 bits of precision using 23 bits
24 bits of precision are equivalent to a little over 7
decimal digits:

24
log2 10

≈ 7.2

© 2009, University of Colombo School of Computing 118

Representing the Mantissa

Suppose we want to represent π:
3.1415926535897932384626433832795.....

That means that we can only represent it
as:

3.141592 (if we truncate)
3.141593 (if we round)

© 2009, University of Colombo School of Computing 119

Representing the Mantissa

The IEEE standard restricts exponents to the
range:

–126 ≤ exponent ≤ +127

The exponents –127 and +128 have special
meanings:
– If exponent = –127, the stored value is 0

– If exponent = 128, the stored value is ∞

© 2009, University of Colombo School of Computing 120

Floating Point Overflow

Floating point representations can overflow,
e.g.,

1.111111 × 2127

+ 1.111111 × 2127

11.111110 × 2127

= ∞1.1111111.11111100 ×× 22128128

© 2009, University of Colombo School of Computing 121

Floating Point Underflow

Floating point numbers can also get too small,
e.g.,

10.010000 × 2-126

÷ 11.000000 × 20

0.110000 × 2-126

= 01.11.10000000000 ×× 22--127127

© 2009, University of Colombo School of Computing 122

Floating Point Representation:
Double Precision

IEEE-754 Double Precision Standard
64 bits:

– 1 bit sign

– 52 bit mantissa

– 11 bit exponent
Exponent range is -1022 to +1023

k = 211-1-1=1023

© 2009, University of Colombo School of Computing 123

Limitations

Floating-point representations only approximate real
numbers

Using a greater number of bits in a representation can
reduce errors but can never eliminate them

Floating point errors
Overflow/underflow can cause programs to crash
Can lead to erroneous results / hard to detect

© 2009, University of Colombo School of Computing 124

Five steps to add two floating point numbers:
1. Express the numbers with the same exponent

(denormalize)

2. Add the mantissas

3. Adjust the mantissa to one digit/bit before the point
(renormalize)

4. Round or truncate to required precision

5. Check for overflow/underflow

Floating Point AdditionFloating Point Addition

© 2009, University of Colombo School of Computing 125

Thank You

