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IT 1204
Section 2.0

Data Representation and Arithmetic
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What is Analog and Digital

The interpretation of an analog signal would correspond 
to a signal whose key characteristic would be a 
continuous signal

A digital signal is one whose key characteristic (e.g. 
voltage or current) fall into discrete ranges of values 

Most digital systems utilize two voltage levels
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Advantage of Digital over Analog
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A bit is a binary digit, the smallest increment of data on a 
machine. A bit can hold only one of two values: 0 or 1

Because bits are so small, you rarely work with 
information one bit at a time.

What is a bit
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plates discharged plates charging plates charged

plates discharging plates discharged

1 2 3
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Can store 1
of 2 possible
states

Bit Storage - Capacitor
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Byte is an abbreviation for "binary term". A single byte is 
composed of 8 consecutive bits capable of storing a single 
character

What is a bit
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8 Bits = 1 Byte

1024 Bytes = 1 Kilobyte (KB)

1024 KB = 1 Megabyte (MB)

1024 MB = 1 Gigabyte (GB)

A word is the default data size for a processor

Storage Hierarchy
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Decimal System
Alphabet  =  { 0,1,2,3,4,5,6,7,8,9 } 

Octal System
Alphabet  =  { 0,1,2,3,4,5,6,7 }

Hexadecimal System
Alphabet  =  { 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F }

Binary System
Alphabet  =  { 0,1 }

Numbering System
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123 1111011
÷2
61 → remainder 1
÷2
30 → remainder 1
÷2
15 → remainder 0
÷2
7 → remainder 1

÷2
3 → remainder 1

÷2
1 → remainder 1

÷2
0 → remainder 1

Converting decimal to binary
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123 1111011
÷2
61 → remainder 1
÷2
30 → remainder 1
÷2
15 → remainder 0
÷2
7 → remainder 1

÷2
3 → remainder 1

÷2
1 → remainder 1

÷2
0 → remainder 1 Most 

significant 
bit

Converting decimal to binary
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123 1111011
÷2
61 → remainder 1
÷2
30 → remainder 1
÷2
15 → remainder 0
÷2
7 → remainder 1

÷2
3 → remainder 1

÷2
1 → remainder 1

÷2
0 → remainder 1

Converting decimal to binary

Least 
significant 

bit
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Convert the number 6510 to binary

Your turn
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25 20212223242627

01234567

Bit position

Decimal value

Converting binary to decimal
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3232 1122448816166464128128

01234567

Bit position

Decimal value

Converting binary to decimal
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Example:Example:
Convert the unsigned binary number 1001101010011010 to 
decimal

01011001

Converting binary to decimal
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01011001

2021222324252627

01234567

Converting binary to decimal
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01011001

01234567

64 12481632128

Converting binary to decimal
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01011001

01234567

64 12481632128

128 + 16 + 8 + 2128 + 16 + 8 + 2 = 154154

So, 10011010 in unsigned binary is 154 in 
decimal

Converting binary to decimal
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Example:Example:
Convert the decimal number 105 to unsigned 
binary

Converting binary to decimal
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Q. Does 128 fit into 105?

A. No

Next, consider the difference: 105- 0*128 = 105

64 12481632

0123456

128

7

0

Converting binary to decimal
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Q. Does 64 fit into 105?

A. Yes

Next, consider the difference: 105- 1*64 = 41

1

64 12481632

0123456

128

7

0

Converting binary to decimal
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Q. Does 32 fit into 41?

A. Yes

Next, consider the difference: 41- 32 = 9

1

64 12481632

1
0123456

128

7

0

Converting binary to decimal
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Convert the number 001100102 to decimal

Your turn
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Decimal System

0,1,2,3,4,5,6,7,8,9,10,11,12,13……

Binary System

0,1,10,11,100,101,110,111,1000,1001,1010,1011
,1100,1101…...

Converting binary numbers
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Using 5 binary digits how many numbers you 
can represent?

Your turn
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HEX Bit Pattern HEX Bit Pattern
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Hexadecimal Notation
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How many binary digits need to represent a 
hexadecimal digit?

Your turn
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Decimal System

0,1,2,3,4,5,6,7,8,9,10,11,12,13……

Hexadecimal System

0,1,,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13,14,15,
16,17,18,19,1A,1B,1C,1D,1E,1F…...

Converting hexadecimal numbers
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• 100101102

• 1001 0110
• 1001 0110
• 9               6

100101102 = 96 Hexadecimal

Binary to Hexadecimal Conversion
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• 110110112

• 1101 1011
• 1101 1011
• D                    B

110110112 = DB Hexadecimal

Binary to Hexadecimal Conversion
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Convert the following binary string to Hexadecimal ...

00101001 

11110101

Your turn
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•00101001 11101012

• 00101001 11110101

• 0010   1001   1111   0101
2 9 F         5

00101001 11101012 = 29F5 Hex

Binary to Hexadecimal Conversion
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Computer Number System
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American Standard Code for Information Interchange 
(ASCII)

Use bit patterns of length seven to represent
Letters of English alphabet:  a - z and A - Z
Digits: 0 – 9
Punctuation symbols: (, ), [, ], {, }, ’, ”, !, /, \
Arithmetic Operation symbols: +, -, *, <, >, =
Special symbols: (space), %, $, #, &, @, ^

27 = 128 characters can be represented by ASCII

ASCII Codes
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00110000001100001a01000001A00100000(space)

…….…….……..…….

00110110601100111g01000111G00100110&

00110101501100110f01000110F00100101%

00110100401100101e01000101E00100100$

00110011301100100d01000100D00100011#

00110010201100011c01000011C00100010“

00110001101100010b01000010B00100001!

ASCIISymbolASCIISymbolASCIISymbolASCIISymbol

Character Representation: ASCII Table
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Character Representation: ASCII Table
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Character Representation: ASCII Table
As computers became more reliable the need for parity bit 
faded.

Computer manufacturers extended ASCII to provide more 
characters, e.g., international characters
Used ranges (27) 128 ↔ 255 (28 - 1)
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• The BINARY string ...

• 0110101 can have two meanings!

• the CHARACTER “5” in ASCII

• AND ...

• the DECIMAL NUMBER 53 in 
BINARY Notation

Your turn



© 2009, University of Colombo School of Computing 40

EBCDIC and ASCII are built around the Latin alphabet

Are restricted in their ability for representing non-
Latin alphabet

Countries developed their own codes for native 
languages

Unicode: 16-bit system that can encode the characters 
of most languages

16 bits = 216 = 65,636 characters

Character Representation: Unicode
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The Java programming language and some operating 
systems now use Unicode as their default character 
code

Unicode codespace is divided into six parts

The first part is for Western alphabet codes, 
including English, Greek, and Russian

Downward compatible with ASCII and Latin-1 character 
sets

Character Representation: Unicode
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Character Representation: Unicode
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English section of Unicode Table 
ACSII equivalent of A is 4116

Unicode is equivalent of A:
• 00 4116

Full chart list:
http://www.unicode.org/charts/

Character Representation: Example
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Performing Arithmetic
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0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10 (carry: 1)

• E.g.
1  1  1  1  1 (carry)

0  1  1  0  1
+ 1  0  1  1  1
=   1 0  0  1  0  0

Binary Addition
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0 - 0 = 0
0 - 1 = 1  (with borrow)
1 - 0 = 1
1 - 1 = 0

• E.g.
*       *   * (borrow)
1  0  1  1  0  1

- 0 1  0  1  1  1
=  0 1  0  1  1  0

Binary Subtraction
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• E.g.
1  0  1  1 

x  1  0  1  0
0  0  0  0

+ 1  0  1  1
+ 0  0  0  0
+   1  0  1  1
=   1  1  0  1  1  1  0

Binary Multiplication
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• E.g.
1  0  1

1  0  1 1  1  0  1  1 
- 1  0  1

0  1  1
- 0  0  0

1  1  1
- 1  0  1

1  0

Binary Division
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Problems of number representation
Positive and negative
Radix point
Range of representation

Different ways to represent numbers
Unsigned representation: non-negative integers
Signed representation: integers
Floating-point representation: fractions

Representing Numbers
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Unsigned binary numbers
Have 0 and 1 to represent numbers

Only positive numbers stored in binary

The Smallest binary number would be …
0  0  0  0  0  0  0  0 which equals to 0

The largest binary number would be …
1  1  1  1  1  1  1  1 which equals ….
128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255 = 28-1

Therefore the range is 0 - 255 (256 numbers)

Unsigned and Signed Numbers
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Signed binary numbers

Have 0 and 1 to represent numbers

The leftmost bit is a sign bit
• 0 for positive

• 1 for negative

Sign bitSign bit

Unsigned and Signed Numbers
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Signed binary numbers
The Smallest positive binary number is 

0  0  0  0  0  0  0  0 which equals to 0

The largest positive binary number is
0  1  1  1  1  1  1  1 which equals ….
64 + 32 + 16 + 8 + 4 + 2 + 1 = 127 = 27- 1

Therefore the range for positive numbers is 0 - 127
(128 numbers)

Unsigned and Signed Numbers
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Problems with simple signed representation
Two representation of zero: + 0 and – 0

0 0 0 0 0 0 0 0  and 1 0 0 0 0 0 0 0

Need to consider both sign and magnitude in arithmetic
• E.g.  5 – 3
• =   5 + (-3)
• =   0 0 0 0 0 1 0 1 + 1 0 0 0 0 0 1 1
• =   1 0 0 0 1 0 0 0
• =   -8

Negative Numbers in Binary
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Problems with simple signed representation
Need to consider both sign and magnitude in arithmetic
• E.g.  =   18 + (-18)
• =   0 0 0 1 0 0 1 0  + 1 0 0 1 0 0 1 0
• =   1 0 1 0 0 1 0 0
• =   -36

Negative Numbers in Binary…
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The representation of a negative integer (Two’s 
Complement) is established by:

Start from the signed binary representation of its 
positive value
Copy the bit pattern from right to left until a 1 has been 
copied
Complement the remaining bits: all the 1’s with 0’s, and 
all the 0’s with 1’s
An exception: 1 0 0 0 0 0 0 0 = -128

Negative Numbers in Binary…
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What is the SMALLEST and LARGEST signed binary 
numbers that can be stored in 1 BYTE

Your turn
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0  1  1  1  1  1  1  1 =  +127
.
.

0  0  0  0  0  0  1  1 =     +3
0  0  0  0  0  0  1  0 =     +2
0  0  0  0  0  0  0  1  =     +1
0  0  0  0  0  0  0  0 =       0
1  1  1  1  1  1  1  1 =      -1
1  1  1  1  1  1  1  0 =      -2
1  1  1  1  1  1  0  1 =      -3

.
1  0  0  0  0  0  0  1 =  -127
1  0  0  0  0  0  0  0 =  -128

Two’s Compliment (8 bit pattern)
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One representation of zero

Arithmetic works easily

Negating is fairly easy

Two’s Compliment benefits
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8-bit unsigned binary representation
Largest number: 1  1  1  1  1  1  1  12 =  25510
Smallest number: 0  0  0  0  0  0  0  02 =   010

8-bit two’s complement representation
Largest number: 0  1  1  1  1  1  1  12 =  12710
Smallest number: 1  0  0  0  0  0  0  02 =  -12810

The problem of overflow
13010 = 1  0  0  0  0  0  1  02

0  0  0  0  1  02 in two’s complement

Ranges of Integer Representation
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Geometric Depiction of Two’s Complement Integers
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-2,147,483,648 to 2,147,483,64732long int

0 to 4,294,967,29532unsigned long int

-32768 - 32767 16int

0 – 6553516unsigned int

RangeSize in BitsType

Integer Data Types in C++
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• 16.357 = the SUM of ...

7 * 10-3 = 7/1000
5 * 10-2 = 5/100
3 * 10-1 = 3/10
6 * 100 = 6
1 * 101 = 10 

• 7/1000 + 5/100 + 3/10 + 6 + 10 = 16 357/1000

Fractions in Decimal
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• 10.011 = the SUM of ...

1 * 2-3 = 1/8
1 * 2-2 = 1/4
0 * 2-1 = 0
0 * 20 = 0
1 * 21 = 2 

• 1/8 + 1/4 + 2 =  2 3/8
• i.e.  10.011 = 2 3/8 in Decimal (Base 10)

Fractions in Binary
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What is 011.0101 in Base 10?

Your turn
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• 011.0101 = the SUM of ...

1 * 2-4 = 1/16
0 * 2-3 = 0
1 * 2-2 = 1/4
0 * 2-1 = 0
1 * 20 = 1
1 * 21 = 2
0 * 22 = 0

• 1/16 + 1/4  + 1 + 2 = 3 5/16 

Fractions in Binary
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Consider the following representation in decimal 
number …

135.26 =  .13526 x 103

13526000 =  .13526 x 108

0.0000002452 =  .2452 x 10-6

.13526 x 103 has the following components:
a Mantissa  = .13526
an Exponent  =  3
a Base  =  10

Decimal Scientific Notation
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Scientific notation for binary. Examples …

11011.101 =  1.1011101 x 24

-10110110000 =  -1.011011 x 210

0.00000010110111 =  1.0110111 x 2-7

Floating Point Representation of
Fractions
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MANTISSA

EXPONENTEXPONENT

SIGNSIGN

RADIX POINTRADIX POINT

SIGN = 00 (+ve) | 11 (-ve)
EXPONENT in EXCESS FOUR EXCESS FOUR Notation

Floating Point Format in 1 Byte
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•To STORE the number ...
+11/8 = 1.001

in FLOATING POINT NOTATION ...

1.  STORE the SIGN BIT

Floating Point Format in 1 Byte
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•To STORE the number ...
+11/8 = 1.001

in FLOATING POINT NOTATION ...

1.  STORE the SIGN BIT

00

Floating Point Format in 1 Byte
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•To STORE the number ...
+11/8 = 1.001

in FLOATING POINT NOTATION ...

2.  STORE the MANTISSA BITS

00

Floating Point Format in 1 Byte
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•To STORE the number ...
+11/8 = 1.001

in FLOATING POINT NOTATION ...

2.  STORE the MANTISSA BITS

00 00 00 11 00

Floating Point Format in 1 Byte
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•To STORE the number ...
+11/8 = 1.001

in FLOATING POINT NOTATION ...

3.  STORE the EXPONENT BITS

00 00 00 11 00

Floating Point Format in 1 Byte
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Bit Pattern Value Representation
111 4    
110 3
101 2
100 1
011 0
010 -1
001 -2
000 -3

EXCESS THREE NOTATION
An excess notation system using bit pattern of length three

Excess-k Representation
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For N bit numbers, k is 2N-1-1
– E.g., for 4-bit integers, k is 7
The actual value of each bit string is its       

unsigned value minus k
To represent a number in excess-k, add k

Excess-k Representation
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Excess-k Representation

• 0000.................... 
0001.................... 
0010.................... 
0011.................... 
0100.................... 
0101.................... 
0110.................... 
0111.................... 
1000.................... 
1001.................... 
1010.................... 
1011.................... 
1100.................... 
1101.................... 
1110.................... 
1111....................

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8

k = 7

Unsigned Excess-k

sliding 
ruler
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•To STORE the number ...
+11/8 = 1.001

in FLOATING POINT NOTATION ...

3.  STORE the EXPONENT BITS

00 00 11 11 00 00 11 00

Floating Point Format in 1 Byte
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•To STORE the number ...
-31/4 = -11.01

in FLOATING POINT NOTATION ...

1.  STORE the SIGN BIT

Floating Point Format in 1 Byte
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•To STORE the number ...
-31/4 = -11.01

in FLOATING POINT NOTATION ...

1.  STORE the SIGN BIT

11

Floating Point Format in 1 Byte
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•To STORE the number ...
-31/4 = -11.01

in FLOATING POINT NOTATION ...

2.  STORE the MANTISSA BITS

11

Floating Point Format in 1 Byte
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•To STORE the number ...
-31/4 = -11.01

in FLOATING POINT NOTATION ...

2.  STORE the MANTISSA BITS

11 11 00 11 00

Floating Point Format in 1 Byte
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•To STORE the number ...
-31/4 = -11.01

in FLOATING POINT NOTATION ...

3.  STORE the EXPONENT BITS

11 11 11 00 11

Floating Point Format in 1 Byte
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•To STORE the number ...
-31/4 = -11.01

in FLOATING POINT NOTATION ...

3.  STORE the EXPONENT BITS

11 11 00 00 11 11 00 11

Floating Point Format in 1 Byte
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Write down the FLOATING POINT
form for the number +11/64 ?

Your turn
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1.  STORE the SIGN BIT

SOLUTION: +11/64 ( .001011 )
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1.  STORE the SIGN BIT

00

SOLUTION: +11/64 ( .001011 )
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2.  STORE the MANTISSA BITS

00

SOLUTION: +11/64 ( .001011 )
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2.  STORE the MANTISSA BITS

00 00 11 11 00

SOLUTION: +11/64 ( .001011 )
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3.  STORE the EXPONENT BITS

00 00 00 00 11 00 11 11

SOLUTION: +11/64 ( .001011 )
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•Example ...
•CONVERT 10111010 to decimal steps ...

1.  Convert EXPONENT (EXCESS 4)

2.  Apply EXPONENT to MANTISSA

3.  Convert BINARY Fraction

4.  Apply SIGN 

Converting FP Binary to Decimal
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1.   CONVERT THE EXPONENT

0 1 11 1 0 1 0

0 1 1 3 3 -- 3 = 03 = 0

SOLUTION: 10111010
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0 1 11 1 0 1 0

2.  APPLY the EXPONENT to the MANTISSA

1 0 1 01

SOLUTION: 10111010
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0 1 11 1 0 1 0

3.  CONVERT from BINARY FRACTION

1 0 1 01 11 ++ 11//22 + + 11//88 = 1 = 1 55//88

SOLUTION: 10111010
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0 1 11 1 0 1 0

4.  APPLY the SIGN

(( 1 +1 + 11//22 + + 11//88 ) =    ) =    -- 1 1 55//88--

SOLUTION: 10111010
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•CONSIDER the FLOATING 
POINT Form of the number...

+ 2 5/16

ROUND-OFF ERRORS
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1.   CONVERT to BINARY FRACTION ...
25/8 = 10.0101 

i.e.    2 + 1/4 + 1/16

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88
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2.   STORE THE SIGN BIT ...

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101
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2.   STORE THE SIGN BIT ...

0

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101
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3.   STORE THE MANTISSA ...

0

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101
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3.   STORE THE MANTISSA ...

0 0 0 1 0 1

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101
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3.   STORE THE MANTISSA ...

0 0 0 1 0 1

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101
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3.   STORE THE MANTISSA ...

0 0 0 1 0

1

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101
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4.   STORE THE EXPONENT ...

0 0 0 1 0

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101
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4.   STORE THE EXPONENT ...

0 0 0 1 01 0 0

Converting this back to DECIMAL we get ...

21/4 i.e. a ROUND OFF ERROR of  1/16

ROUNDROUND--OFF ERRORS OFF ERRORS +2+255//88 = 10.10110.101
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What is the BIGGEST and SMALLEST 
can be represented by one-byte floating 
point notation

Range of FP Representation



© 2009, University of Colombo School of Computing 106

The biggest number can be represented by one-byte 
floating point notation is:

= +1.1111 x 24 =  +11111 =  +31

0 1 1 1 11 1 1

Range of FP Representation
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The Smallest positive number can be represented by 
one-byte floating point notation is:

= +1.0000 x 2-3 =  +.001 =  +1/8

0 0 0 0 00 0 0

Range of FP Representation
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The largest negative number can be represented by 
one-byte floating point notation is:

= -1.0000 x 2-3 =  -.001 =  -1/8

1 0 0 0 00 0 0

Range of FP Representation
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The smallest number can be represented by one-byte 
floating point notation is:

= -1.1111 x 24 =  -11111 =  -31

1 1 1 1 11 1 1

Range of FP Representation
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What is the SOLUTION for this??? 

Range of FP Representation
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3.4E-4932 to 3.4E+4932 
Ten digits of precision

80long double

1.7E-308 to 1.7E+308 
Ten digits of precision

64double

3.4E-38 to 3.4E+38 
Six digits of precision

32float

RangeSize in BitsType

Floating-Point Data types in C++
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Si
gn

 b
it

Si
gn

 b
it

BiasedBiased
ExponentExponent

Significand or MantissaSignificand or Mantissa

+/- . Mantissa x 2 exponent

Point is actually fixed between sign bit and body of 
Mantissa

Exponent indicates place value (point position)

Floating-Point Representation
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Mantissa is stored in 2’s compliment

Exponent is in excess notation
8 bit exponent field
Pure range is 0 – 255
Subtract 127 to get correct value
Range -127 to +128

Floating-Point Representation
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Floating Point numbers are usually normalized
i.e. exponent is adjusted so that leading bit (MSB) of 
mantissa is 1
Since it is always 1 there is no need to store it
Where numbers are normalized to give a single digit 
before the decimal point

E.g. 3.123 x 103

Floating-Point Representation
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Floating-Point Representation
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Floating Point Representation: 
Expressible Numbers
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Representing the Mantissa

The mantissa has to be in the range 
1 ≤ mantissa < base

Therefore        
If we use base 2, the digit before the point must be a 1
So we don't have to worry about storing it

We get 24 bits of precision using 23 bits
24 bits of precision are equivalent to a little over 7 
decimal digits:

24
log2 10

≈ 7.2
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Representing the Mantissa

Suppose we want to represent π:
3.1415926535897932384626433832795.....

That means that we can only represent it 
as:

3.141592 (if we truncate)
3.141593 (if we round)
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Representing the Mantissa

The IEEE standard restricts exponents to the 
range:

–126 ≤ exponent ≤ +127

The exponents –127 and +128 have special 
meanings:
– If exponent = –127, the stored value is 0 

– If exponent =  128, the stored value is ∞
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Floating Point Overflow

Floating point representations can overflow, 
e.g.,

1.111111 × 2127

+ 1.111111 × 2127

11.111110 × 2127

= ∞1.1111111.11111100 ×× 22128128
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Floating Point Underflow

Floating point numbers can also get too small, 
e.g.,

10.010000 × 2-126

÷ 11.000000 × 20     

0.110000 × 2-126

= 01.11.10000000000 ×× 22--127127
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Floating Point Representation: 
Double Precision

IEEE-754 Double Precision Standard
64 bits: 

– 1 bit sign

– 52 bit mantissa 

– 11 bit exponent 
Exponent range is -1022 to +1023

k = 211-1-1=1023 
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Limitations

Floating-point representations only approximate real 
numbers

Using a greater number of bits in a representation can 
reduce errors but can never eliminate them

Floating point errors
Overflow/underflow can cause programs to crash
Can lead to erroneous results / hard to detect
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Five steps to add two floating point numbers:
1. Express the numbers with the same exponent 

(denormalize)

2. Add the mantissas

3. Adjust the mantissa to one digit/bit before the point 
(renormalize)

4. Round or truncate to required precision

5. Check for overflow/underflow

Floating Point AdditionFloating Point Addition
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Thank You


