IT 1204
Section 3.0

Boolean Algebra and Digital Logic

- © 2009, University of Colombo School of Computing
UCSC

Boolean Algebra

-}
o © 2009, University of Colombo School of Computing
UCSC

Logic Equations to Truth Tables

X = AB+AB+ AB

A
0
0
1
1

R O k| O] O

s
) © 2009, University of Colombo School of Computing @

Sum of Products

The OR operation performed on the products of the AND
operation

Fill the corresponding cells with 1 for each product, the
other cells with O

__ Al B | X

X = (AB)+(AB)+(AB) ———
Azl,K:O 0| 1 | 1
B=1B=0 1 | o o
1 | 1| 1

=1 © 2009, University of Colombo School of Computing 4
UCSC

Product of Sums

The AND operation performed on the sums of the OR
operation

Fill the corresponding cells with O for each sum, the
other cells with 1

Y =(A+B).(A+B)
A=0,A=1
B=0,B=1

| | O] of >
| Ol m,r| O @
Ol O Rr| | X

=1 © 2009, University of Colombo School of Computing 5
UCSC

Truth Tables to Logic Equations

e Sum of Products - consider 1s
— Consider A=1,B=1

X = (AB)+ (AB)

e Product of sums — consider 0s
— Consider A=0,B=0

R R, O O >

| Ol | O W

O O r| L[| X

.

X =(A+B).(A+B)

© 2009, University of Colombo School of Computing @

Your Turn: Exercisel

= Convert the following equation which is in the form of
Product-of-sums into the form of Sum-of-products

f (ABCD)=(A+B+C)(A+B+C+D)(A+B+D)(A+C)

<1:
=3 © 2009, University of Colombo School of Computing 7
UCSC

Answer: Exercisel

f (ABCD) =(A+B+C)(A+B+C+D)(A+B+D)(A+C)

f (ABCD)=(A+B+C)(A+B+C+D)(A+B+D)(A+C)

f (ABCD)=(A+B+C)+(A+B+C+D)+(A+B+D)+(A+C)

f (ABCD) = (AB.C)+(AB.C.D)+(AB.D)+(AC)
f (ABCD) = (A.B.C)+(AB.C.D)+(AB.D)+(AC)

UCSC

© 2009, University of Colombo School of Computing @ 8

R

uese

Boolean Postulates

0.0=0
1+1=1
0+0=0
1.1=1
1.0=0.1=0
1+0=0+1=1

© 2009, University of Colombo School of Computing

Laws of Boolean Algebra

Commutative Law
> A+B=B+A

> AB =BA
Associate Law

> (A+B)+C=A+(B+C)
> (AB)C =A(BC)

© 2009, University of Colombo School of Computing

10

Laws of Boolean Algebra

Distributive Law
> AB+C)=AB+AC

> A+ (BC) =(A+B)(A+C)

ldentity Law
> A+A=A
> A.A=A

© 2009, University of Colombo School of Computing @

11

Laws of Boolean Algebra

Redundancy Law
> A+ AB = A

> AA+B) = A

Demorgan’s Theorem
> (A+B)=AB
~ (AB)=A+B

<1:
=3 © 2009, University of Colombo School of Computing
UCSC

12

ucse

Laws of Boolean Algebra

AB+AB=A
(A+B)(A+B)=A

A+0=A
AO0=0

© 2009, University of Colombo School of Computing @

13

Laws of Boolean Algebra

© 2009, University of Colombo School of Computing @

14

.

Laws of Boolean Algebra

A+AB=A+B
A(A+B) = AB

© 2009, University of Colombo School of Computing @

15

Implementation of Boolean Functions

A Boolean function can be realised in either SOP or
POS form

At this point, it would seem that the choice would
depend on whether the truth table contains more 1s
and Os for the output function

The SOP has one term for each 1, and the POS has
one term for each O

L) |
= © 2009, University of Colombo School of Computing @ 16
UCSC

Implementation of Boolean Functions

However, there are other considerations:

> Itis generally possible to derive a simpler Boolean
expression from truth table than either SOP or

POS

> It may be preferable to implement the function with
a single gate type (NAND or NOR)

g © 2009, University of Colombo School of Computing @ 17
UCSC

Implementation of Boolean Functions

The significance of this is that, with a simpler

Boolean expression, fewer gates will be needed to
Implement the function

Methods that can be used to achieve simplification
are:

> Algebraic Simplification
> Karnaugh Maps

o |
= © 2009, University of Colombo School of Computing @ 18
UCSC

Your Turn: Algebraic Simplification

Simplify the following equation using Boolean
algebra laws

f (ABC) =(A+B+C)(A+BC)

<1:
=3 © 2009, University of Colombo School of Computing
UCSC

19

Answer: Algebraic Simplification

f (ABC)=(A+B+C)(A+BC)

f (ABC) = AA+ ABC + AB+BBC + AC + BCC
f (ABC)= A(l+BC+B+C)+BC+BCC

f (ABC)=A+BC

©
© 2009, University of Colombo School of Computing
UCSC

20

Karnaugh Maps

For purposes of simplification, the Karnaugh map is a
convenient way of representing a Boolean function of
a small number (up to 4 to 6) of variables

The map is an array of 2" squares, representing the
possible combinations of values of n binary variables

@ |
N © 2009, University of Colombo School of Computing
UCSC

21

Karnaugh Maps
The map can be used to represent any Boolean
function in the following way:

» Each square corresponds to a unique product in the
sum-of-products form.

> With a 1 value corresponding to the variable and a 0
value corresponding to the NOT of that variable

= © 2009, University of Colombo School of Computing @ 22
UCSC

Karnaugh Maps: 2 Values

B A 0 1
0 0 1
1 1 1

X = AB+AB+ AB

©
© 2009, University of Colombo School of Computing @ 23
UCSC

Karnaugh Maps: 2 Values

The AB corresponds to the fourth square in the
Figure

For each such production in the function, 1 is
placed in the corresponding square

AB
A
4 N
00 01 11 10
1 1
F=AB +AB

= © 2009, University of Colombo School of Computing
UCSC

24

Karnaugh Maps: 3 Values

c AB 00 01 11 10
0 1 1 0 0
1 0 0 1 1

X =ABC+ABC+ABC+ABC

©.
© 2009, University of Colombo School of Computing @

X =ABC.D+ABCD+ABCD+ABC.D+ABC.D+ABC.D+ABC.D+ABC.D

o)
ucse

Karnaugh Maps: 4 Values

AB 00 01 11 10

CD
00 1 0 1 1
01 0 1 1 0
11 0 1 1 0
10 0 1 0 1

© 2009, University of Colombo School of Computing

D

26

Karnaugh Maps: Exercise 1

= Simplify the following Karnaugh Map using Boolean
equations (Write your answers in both SOP and POS)

\goo 01 [11 [10
C

0 0 1 0 0

1 1 1 0 1

<1-
=3 © 2009, University of Colombo School of Computing
UCSC

Karnaugh Maps: Answer

(ABC)+(ABC)+(ABC)+(ABC) 4= AB+BC

(A+B+C).(A+B+C).(A+B+C).(A+B+C) ﬁ (B +C)-(K+§)

© '
© 2009, University of Colombo School of Computing @ 28
UCSC

= Simplify the following Karnaugh Map using Boolean

Karnaugh Maps: Exercise 2

equations (Write your answers in both SOP and POS)

.

cd ABl 00 01 11 10
00 1 0 0 1
01 0 1 1 0
11 0 0 1 0
10 1 0 0 1

© 2009, University of Colombo School of Computing

@

29

Karnaugh Maps: Answer

(ABCD) + (ABCD) + (ABCD) + (ABCD) + (ABCD) + (ABC D) + (ABC D)

X

BD+BCD+ ABD
ABl 00 | o1 | 11 | 10
CD
00 1 0 0 1
———
01 | 0 1 1 0
11 ([0 0 1 0
10 1 0 0 1

© '
© 2009, University of Colombo School of Computing @ 30
UCSC

Karnaugh Maps: Answer

(A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C +D).
(A+B+C+D).(A+B+C+D).(A+ B+C+5).(K+B+E+B).

(A+B+C+D) I

(B+D).(B+D).(A+C + D)

ABl 00 | o1 | 11 | 10
o)
00 1 0 0 1
———
01 | 0 1 1 0
11 ([0 0 1 0
10 1 0 0 1

©
© 2009, University of Colombo School of Computing
UCSC

31

Simplified Labeling of Karnaugh Maps

The labeling used in figure emphasizes the relationship
between variables and the rows and columns of the map

C

The two rows embraced by —

the symbol A are those In
which the variable A has the
value 1; the rows not
embraced by the symbol A s
are those in which A is 0

A < -

=3 © 2009, University of Colombo School of Computing 32
UCSC

B

Simplified Labeling of Karnaugh Maps

Once the map of a function is created, we can often write
a simple algebraic expression for it by noting the
arrangement of the 1s on the map

The principle is as follows:

» Any two squares that are adjacent differ in only one of
the variables

» If two adjacent squares both have an entry of 1, then
the corresponding product terms differ in only one
variable

» In such a case, the two terms can be merged by
eliminating that variable

L) |
= © 2009, University of Colombo School of Computing @ 33
UCSC

Simplified Labeling of Karnaugh Maps

= For example, in following FIGURE, the two adjacent
sguares correspond to the two terms ABCD and ABCD

= The function expressed Is
ABCD + ABCD = ABD

AB <

\

=g © 2009, University of Colombo School of Computing @ 34
UCSC

Simplified Labeling of Karnaugh Maps

This process can be extended in several ways:

» First, the concept of adjacent can be extended to
Include wrapping around the edge of the map

» Thus, the top square of a column is adjacent to
the bottom square, and the leftmost square of a
row is adjacent to the rightmost square

> Second, we can group not just 2 squares but 2"
adjacent squares, that is, 4, 8, etc

L) |
= © 2009, University of Colombo School of Computing @ 35
UCSC

Your turn: Karnaugh Maps

AB <

X ? © 2009, University of Colombo School of Computing @ 36

Answer: Karnaugh Maps

o BCD

)
© 2009, University of Colombo School of Computing
UCSC

37

Your turn: Karnaugh Maps

X ? © 2009, University of Colombo School of Computing @ 38

Answer: Karnaugh Maps

AB<’? Gl ABD

)
© 2009, University of Colombo School of Computing
UCSC

39

Your turn: Karnaugh Maps

AB <

© 2009, University of Colombo School of Computing
UCSC

40

Answer: Karnaugh Maps

o AB

)
© 2009, University of Colombo School of Computing
UCSC

41

Your turn: Karnaugh Maps

CD
N
' N
)
V N
1 1
AB <
1 1
N
\

X ? © 2009, University of Colombo School of Computing @ 42

Answer: Karnaugh Maps

CD
N
'z N\
.
71 1\ C
" BC
1 1
N
\

© |
© 2009, University of Colombo School of Computing
UCSC

43

Your turn: Karnaugh Maps

(
B annn

.
©

? © 2009, University of Colombo School of Computing @ 44
UCSC

Answer: Karnaugh Maps

[)
=

AB £

@)
uese

© 2009, University of Colombo School of Computing

D

45

Your turn: Karnaugh Maps

CD
A
/s N
(T
1 1
1 1
AB <
1 1
1 1
\ _)

© 2009, University of Colombo School of Computing @ 46

Answer: Karnaugh Maps

CD
' - N
.
1 1
1 1
AB < C
1 1
k 1 1

)
© 2009, University of Colombo School of Computing
UCSC

47

Simplified Labeling of Karnaugh Maps

= |n attempting to simplify, first look for the largest
grouping possible:

» When you are circling groups, you are allowed to
use the same 1 more than once

> If any isolated 1s remain after the groupings, then
each of these is circled as a group of 1s

» Finally, before going from the map to a simplified
Boolean expression, any group of 1s that is
completely overlapped by other groups can be
eliminated

o © 2009, University of Colombo School of Computing @ 48

=~

Karnaugh Maps: Overlapping Groups

CD
AN
e A
1 11 1
- N _ 00 O 0
00 01 11 10 00
1 1 armn
0 1
A —— AB 01
{1 < aE
11 [
= AB +BC 10 -
\—
F=BCD +ACD
@)
= © 2009, University of Colombo School of Computing @ 49
UCSC

Your turn: Karnaugh Maps

L)
\;? © 2009, University of Colombo School of Computing @ 50

Answer: Karnaugh Maps

- ™~

F= ' +AB+BCD
F = (A+C).(A+B).(B+C+D)

© 2009, University of Colombo School of Computing 51
UCSC

Drawing a Circuit

Sum-of-Products
Expression

ABC+ABC+ABC
+ABC+ABC

Q.
© 2009, University of Colombo School of Computing

D

Digital Logic
Circuit
A B C
—
— N\
[____,,f'
_ﬁ""-, —I,L_I_,__
-/ 7
I | N\
-—___J,r'
.] T
? -

52

@]

Drawing a Circuit

AB AB AB

o)
ucse

© 2009, University of Colombo School of Computing

D

B f B+AC
k—}

53

UCSC

o

Drawing a Circuit

B+AC

-

>

© 2009, University of Colombo School of Computing

D

54

ucse

Logic Operators

© 2009, University of Colombo School of Computing

D

55

Logic Operations

Basic logic operators and logic gates
Boolean algebra
Combinational Circuits

Basic circuit design

© 2009, University of Colombo School of Computing

D

56

Basic Logic Operators and Logic Gates

= AND

= OR

= NOT

= XOR (Exclusive OR)
= NOR

= NAND

= XNOR

- © 2009, University of Colombo School of Computing 57
UCSC

ucse

Buffer

© 2009, University of Colombo School of Computing

@

AND Operation

= . Operator

= N Operator

= A.B=

A"B

A .

B

o| o >

o O O

© 2009, University of Colombo School of Computing

@

= + Operator
= v Operator
- A+B=AVB

OR Operation

o| o >

© 2009, University of Colombo School of Computing

@

NOT Operation

= ~ Operator

= - Operator

A A’
— 1
A=—A=~ A=A

1 0

)
© 2009, University of Colombo School of Computing
UCSC

XOR Operation

= @ Operator

A B AD
ADB 5 5 5
0 1 1

A,
e T [o | 1
1 1 0

© |
© 2009, University of Colombo School of Computing
UCSC

NAND Operation

(A.B) = (AB)' A B (AB

0 0 1

0 1 1

A B 1 0 1

© |
© 2009, University of Colombo School of Computing
UCSC

A

B

NOR Operation

(A+B)=(A+B)

A B (A+B)
0 0 1
0 1 0
1 0 0
1 1 0

@
© 2009, University of Colombo School of Computing
UCSC

D

XNOR Operation

(AD B)

(A® B)

|l | ol ol >

| O | O @

] O O]

© 2009, University of Colombo School of Computing

D

Drawing Logic Gates

In addition to the basic gates, gates with 3,4, or
more inputs can be used

E.g. X +y + z can be implemented with a single
OR gate with 3 inputs

© |
= © 2009, University of Colombo School of Computing
UCSC

66

Drawing Logic Gates

X = (A+B)C

O

= © 2009, University of Colombo School of Computing
UCSC

D

uese

Drawing Logic Gates
X =A+(BC)+D

= —
. D

o — Tmo—

© 2009, University of Colombo School of Computing

D

uese

Drawing Logic Gates

X =(A.B)+(AC)

#1]

—

-

5>

oo

I

© 2009, University of Colombo School of Computing

D

Drawing Logic Gates

X =(A+B).(C+D).C

Erbl -
:) o

<1:
=3 © 2009, University of Colombo School of Computing
UCSC

Reducing Logic Gates

Reducing the number of inputs

» The number of inputs to a gate can be reduced by
connecting two (or more) inputs together

» The diagram shows a 3-input AND gate operating
as a 2-input AND gate

© |
N © 2009, University of Colombo School of Computing
UCSC

71

Reducing Logic Gates

Reducing the number of inputs

» Reducing a NOT gate from a NAND or NOR gate

» The diagram shows this for a 2-input NAND gate

R

. © 2009, University of Colombo School of Computing 79
UCSC

Logic Gates

= Typically, not all gate types are used in
Implementation

» Design and fabrication are simpler if only one or
two types of gates are used

» Therefore, it is important to identify functionally
complete sets of gates

» This means that any Boolean function can be
Implemented using only the gates in the set

L) |
= © 2009, University of Colombo School of Computing @ 73
UCSC

",

Logic Gates

The following are functionally complete sets:
AND, OR, NOT

AND, NOT

OR, NOT

NAND

NOR

vV V V VYV V

- © 2009, University of Colombo School of Computing
UCSC

74

Logic Gates

AND, OR, and NOT gates constitute a functionally
complete set, since they represent the 3 operations of
Boolean algebra

For the AND and NOT gates to form a functionally
complete set, there must be a way to synthesize the OR
operation from the AND and NOT operations

A+B = A.B
A OR B = NOT((NOT A) AND (NOT B))

o |
g © 2009, University of Colombo School of Computing @ 75
UCSC

Logic Gates

Similarly, the OR and NOT operations are functionally
complete because they can be synthesize the AND
operation

A.B =A+B
A AND B = NOT((NOT A) OR (NOT B))

© |
N © 2009, University of Colombo School of Computing
UCSC

76

Logic Gates

The AND, OR and NOT functions can be

Implemented solely with NAND gates, and the same
thing for NOR gates.

For this reason, digital circuits can be, and frequently

are, implemented solely with NAND gates or solely
with NOR gates

L) |
= © 2009, University of Colombo School of Computing @ 77
UCSC

Logic Gates

The diagram shows how the NOT function can be
Implemented solely with NAND gate

A },:

R

c:t }
. © 2009, University of Colombo School of Computing 78
UCSC

Logic Gates

The diagram shows how the AND function can be
Implemented solely with NAND gate

A A.B

A.B
B
A

(1 i
= © 2009, University of Colombo School of Computing
UCSC

79

Logic Gates

The diagram shows how the OR function can be
Implemented solely with NAND gate

A 4}_5
BEina

('\, :
- © 2009, University of Colombo School of Computing
UCSC

80

Logic Gates

Gate Equivalent in NAND gates

|
DO
O
_E
}D{}

=1 © 2009, University of Colombo School of Computing
UCSC

NOT =

AND

W

OR

NOR

v @

Your turn

Draw a diagram that shows how the NOT function
can be implemented solely with NOR gate

© 2009, University of Colombo School of Computing @

82

Logic Gates

The diagram shows how the NOT function can be
Implemented solely with NOR gate

)

R

c:t }
. © 2009, University of Colombo School of Computing 83
UCSC

Your turn

Draw a diagram that shows how the OR function
can be implemented solely with NOR gate

© 2009, University of Colombo School of Computing @

84

Logic Gates

= The diagram shows how the OR function can be
Implemented solely with NOR gate

A+B ——
A+B

© 2009, University of Colombo School of Computing @

85

Your turn

Draw a diagram that shows how the AND function
can be implemented solely with NOR gate

© 2009, University of Colombo School of Computing @

86

Logic Gates

The diagram shows how the AND function can be
Implemented solely with NOR gate

P A B
) i

<1: |
=3 © 2009, University of Colombo School of Computing
UCSC

87

Substituting Gates in an Logic System

. © 2009, University of Colombo School of Computing 88
UCSC

Substituting Gates in an Logic System

89

LA
_? © 2009, University of Colombo School of Computing

Substituting Gates in an Logic System

—f
2t

g

c:
iy © 2009, University of Colombo School of Computing
UCSC

viole

D=

D

90

ucse

Combinational Circuits

© 2009, University of Colombo School of Computing

D

91

i@} .:.- 3

Combinational Logic

Also called combinatorial logic

A type of logic circuit whose output is a function of
the present input only

¢) © 2009, University of Colombo School of Computing @ 92
UCSC

Half Adder

Finds the sum of two bits

The sum can be found
using the XOR operation

and the carry using the X
AND operation Y

Inputs
X X
0) 0)
0) 1
1 O
1 1

Outputs

Sum Carry

=1 © 2009, University of Colombo School of Computing
UCSC

0 0
1 0
1 0
0 1
3} : Sum
7/
Carry

@

Full Adder

= We can change our half adder into to a full adder by
Including gates for processing the carry bit

= The truth table for a full adder is:

Inputs Outputs
Carry Carry

X X In Sum Out
0 0 0 0 0
0 0 1 1 0
o) 1 0) 1 0
0 1 1 0 1
1 O 0] 1 0
1 O 1 0 1
1 1 0 0 1
1 1 1 1 1

=7 © 2009, University of Colombo School of Computing
UCSC

Converting a Half Adder into a Full Adder

Inputs Outputs Carry In
Carry Carry cum
X Y In Sum Out X * \
Y D—H—

0 o) 0 0 0 i

0 0 1 1 0

0 1 0 1 0 \IJ

0 1 1 0 1

1 O 0 1 0

1 O 1 0 1

1 1 0 0 1

1 1 1 1 1

Carry Out

© '
© 2009, University of Colombo School of Computing @ 95
UCSC

Ripple-carry Adder (I)
= Just as we combined half adders to make a full adder,

full adders can be connected in series

» The carry bit “ripples” from one adder to the next;
hence, this configuration is called a ripple-carry adder

3ils }|<15 Tl Tl TO TO
C o C c
Carry Out FA (_15_ L 2_ FA { 1 FA <_0 Carry In
| | |
Oy O, Oo

=3 © 2009, University of Colombo School of Computing 96
UCSC

Ripple-carry Adder (l)

Digits of

Digits of

second number | I ““““““““““ I ————————————————— I __________ L I
Y Y Y

A
=
N

A
=
N

A
=2
N
=
N

(ial@: | ﬁ (— l—@: |

1/2

A
=
N

A
=
N

A

= © 2009, University of Colombo School of Computing @ 97
UCSC

colldetien)s o o)zl
Fellatediwires JH/_
"r OWH S PUIS

muiliti=BIEVvaill

Adder

A3-AQ B3-BO

out3-out0

comoonents

© 2009, University of Colombo School of Computing

inputs

output

D

98

Decoder

= Selects a memory location according a binary value
placed on the address lines of a memory bus

= Decoders with n inputs can select any of 2" locations

Decoder

n Inputs 2n0utputs

©
N © 2009, University of Colombo School of Computing @
UCSC

99

2-t0-4 Decoder

Yibc' :

If x=0andy =1,
which output line
IS enabled?

o

el

100

=

©
© 2009, University of Colombo School of Computing
UCSC

Multiplexer

= A multiplexer does the opposite of a decoder

= Selects a single output from several inputs

» The particular input chosen for output is determined
by the value of the multiplexer’s control lines

» To select among n inputs, log,n control lines are

needed
Io—>
I Multivol Output
1—) 1 lp exer
I,—> (MUX)
I3———>

I

S1 Sp

Control lines

? © 2009, University of Colombo School of Computing @ 1o
UCSC

4-to-1 Multiplexer

Sl ® _\313013
L>07 MR /
S \S1§0I2
' \513011
I3 “-gl_/
I ' 3.3
2] T\ 3150%
I, | / |f SO:_l and_Sle,
‘ which input is
1o selected as output?

ucse

© 2009, University of Colombo School of Computing @ 102

Arithmetic

 Computers need to do more than just addition
— arithmetic: + —*/ %

— logic: & | ~ << >>

 Need a circuit that can select operation to perform

§ .

©. .
= © 2009, University of Colombo School of Computing @ 103
UCSC

Arithmetic Logic Unit (ALU)

A | B

more
v v v v v v operations
V \V4 \V4 \/ here
op op op op
0 + 1 * 2 & 3 << = s on

Multiplexer: a
combinatorial
circuit which
C - 1 ~ T “ O

» L J

AT RING =

Jeration:

© 2009, University of Colombo School of Computing

104

Arithmetic Logic Unit (ALU)

o)
Example:

cOmpUt

more
operations
here

comput
ignor
multi}

© 2009, University of Colombo School of Computing

105

ucse

Sequential Logic — Memory

© 2009, University of Colombo School of Computing @

106

Sequential Logic Circuits

= Combinational logic circuits are perfect for situations
which require the immediate application of a Boolean
function to a set of inputs

= But, here are times when we need a circuit to change
Its value with consideration to its current state as well
as Its inputs

> These circuits have to “remember” their current
State

= Sequential logic circuits provide this functionality

\/) © 2009, University of Colombo School of Computing @ 107
UCSC

Sequencing Events

= Seguential logic circuits require a means by which
events can be sequenced

» State changes are controlled by clocks

* A “clock” is a special circuit that sends electrical
pulses through a circuit

» Clocks produce electrical waveforms such as this one

» State changes occur in sequential circuits only when
the clock ticks

\? © 2009, University of Colombo School of Computing @ 108
UCSC

Feedback in Sequential Logic Circuits

= Sequential circuits rely on feedback to retain their
state values

= Feedback in digital circuits occurs when an output is
looped back to the input

» Example,

lwl‘g

If Qis O it will always be O, ifitis 1, it will always
be 1

(1 i
= © 2009, University of Colombo School of Computing 109
UCSC

SR Flip-flop (Set-Reset) (I)

S

> C
R

Q

Q

S

 The behavior of an SR flip-
flop is described by a
characteristic table

— Q(t) output at time t

— Q(t+1) output after the
next clock pulse

© 2009, University of Colombo School of Computing @

.

R PR OO W0

R
0)
1
0
1

Q@(t+1)

Ol

Q(t) (no change)

0O (reset to 0)
l (set to 1)
undefined

110

SR Flip-flop: Block Diagram

Sand R QandQ =
Flip-flops are often input output
drawn like this in
block diagrams / \
S Q

)
Ol

CKIS read/wiite (Cclleck®
RECAUSE! IS IMPU IS

CONNECIET 10) e COmpPUIErss
Processor clock)

®

l-,
) © 2009, University of Colombo School of Computing @ 111
UCSC

SR Flip-flop (1)

= The SR flip-flop has three inputs: S, R and Q(t)
» When both S and R are 1, the SR flip-flop is unstable

Present Next
State State
S R Q(t) Q(t+1)
0 0 0 0]
0 0 1 1
0 1 0] 0
0 1 1 0
1 0 0] 1
1 0 1 1
1 1 0 undefined
1 1 1 undefined

=1 © 2009, University of Colombo School of Computing @ 112
UCSC

JK Flip-flop (Jack Kilby)

= Modified version of the SR flip-flop to provide a stable
state when both inputs are 1

O L e
>C K — —C
) A —

T
|
|

Ol

Q(t+1)

K

0 @(t) (no change)
1 0 (reset to 0)

0 1l (set to 1)

1

Q(t)

H R OO g

©
) © 2009, University of Colombo School of Computing @ 113
UCSC

JK Flip-flop: Binary Counter

The low-order bit is
complemented at each
clock pulse

Whenever it changes from
1 to O, the next bit is

complemented, and so on
through the other flip-flops

Q(t+1)

K

0 Q(t) (no change)
1 0O (reset to 0)

0 l (set to 1)

1

Q(t)

H R OO g

Count

—

Enable

P

g

P

©
o
)

[—

Clock

Ty

=7 © 2009, University of Colombo School of Computing
UCSC

@

— Output
Carry

114

D Flip-flop (Data)

Fundamental circuit of computer memory
Used to store 1 bit

Can be implemented with gates

Not combinatorial logic

> because current output may depend on previous
state

Example of sequential logic

> current output depends on inputs and prior output

\? © 2009, University of Colombo School of Computing @ o
UCSC

D Flip-flop

NOR gate: OR gate
followed by NOT gate

data in

.

1o

P read/write control:
read/write 0 = read, 1 = write

i’ © 2009, University of Colombo School of Computing @ 116
UCSC

data out

U

D Flip-flop: Writing

Try changing data in to 0
/— and watchi data out

data in = 1 1

I]

] 0
7 data out = 1
_ when read/write = 1,
read/write = 1 data out = data in

(write)

= © 2009, University of Colombo School of Computing @ 117
UCSC

D Flip-flop: Reading

datain =7 ?

i ;
] 0
e S e
——— data out = 1
when read/write = 0, no signals

read/write = 0 in box can change -- data out
(read) holds value regardless of data in

\? © 2009, University of Colombo School of Computing @ e
UCSC

U

D Flip-flop: Block Diagram

N

D = data Q = data

out

rr

|

CKusiread/wiie (tclocks
PECAUSE S IRPUEIS elten

CONNECIED 10) the CompUierss

PIOCESSoN cleck)

© 2009, University of Colombo School of Computing

D

119

In0

In1
®

In2
®

In3
Clock L

IIJIJI.,

D Flip-flop: 4-bit Register

Q |—— out,

Q Out3

A register stores data
Inside the CPU

Register

© 2009, University of Colombo School of Computing @

Out0
Out

Out2

Out

120

Memory

« Memory can store many bits independently
— register banks contain many flip-flops
* Need to identify which bit (flip-flop) to read or write

e Give each flip-flop a unigue number (address)

c:&? © 2009, University of Colombo School of Computing @ 121
UCSC

Memory: Circuit Diagram

Decoder: feeds input to selected output, O to all others

data in
® D Q
address 0
P> CK
0 > ¢— D Q 0
- address 1
U 1 > 1 > CK 1 z
m 2 > 2
Ol — , X
> address 2
A > CK A
[[
[o—— b Q [
address address 3
: [
. . . millions more flip-flops . . I
[
[

=i © 2009, University of Colombo School of Computing 122
UCSC

Memory: Writing

Whtingvalue

|0 fllg=rlee

data in | . |
] —° @ e At acicrfess Z
0 > CK
1
0 > —— P Q > 0
g address 1 7
e — » 2 C — >
> 1. p Q »3 X
> :] address 2 >
. I
oi— D Q I
address 0 E address 3
>—DCK |
2 : |
|
|

. . . millions more flip-flops . .
| .
L 11| rd/wr

© 2009, University of Colombo School of Computing @ 123

Memory: Reading
We jUSt wrote Reading
this value
data in vglue from
—° @ flip-flop at
0 address 0
. ;CK address 2
|
0 > \ O Q » 0
0 address 1
= P =
m 2 > =
(@ 3 > D\ Q 1 »3 X
> 0] address 2 >
‘ AP« yy
o D Q
address 0 . address 3
» CK
2 . . . millions more flip-flops . .
Ofrd/wr

ucse

© 2009, University of Colombo School of Computing

@

124

Memory: 4-words, 3 bits/word

W:iOFDWZTI_-DW:TﬁDW:i;DﬁDl
5] G5 BT
=) = 0
| el [P o e
Gl = | | = Dﬁj
In, _DQJ I J = | =)

= e

R o R

Word 0 word1 () Word 2 word 3
Select Select Select Select
Clock

Write |
*| “Enable Sy

&)
) © 2009, University of Colombo School of Computing @

125

Summary (1)

Computers are implementations of Boolean logic

Boolean functions are completely described
by Truth Tables

Logic gates are small circuits that implement Boolean
operators

The basic gates are AND, OR and NOT

The “universal gates” are NOR and NAND

\? © 2009, University of Colombo School of Computing @ 126
UCSC

Summary (Il)

Computer circuits consist of combinational logic
circuits and sequential logic circuits

= Combinational circuits produce outputs (almost)
Immediately when their inputs change

= Sequential circuits have internal states as well as
combinations of input and output logic

» The outputs may also depend on the states left behind
by previous inputs

» Sequential circuits require clocks to control their
changes of state

» The basic sequential circuit unit is the flip-flop

\? © 2009, University of Colombo School of Computing @ e
UCSC

Thank You

© 2009, University of Colombo School of Computing @ 128

