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Boolean Algebra and Digital Logic
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Boolean Algebra
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A B X

0 0

0 1

1 0

1 1

Logic Equations to Truth Tables

ABBABAX ++= ..
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The OR operation performed on the products of the AND
operation

Fill the corresponding cells with 1 for each product, the 
other cells with 0

A B X

0 0 1

0 1 1

1 0 0

1 1 1

Sum of Products

0,1

0,1
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The AND operation performed on the sums of the OR
operation

Fill the corresponding cells with 0 for each sum, the 
other cells with 1

A B X

0 0 1

0 1 1

1 0 0

1 1 0

Product of Sums

1,0

1,0
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BABAY
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A B X

0 0 1

0 1 1

1 0 0

1 1 0

• Sum of Products - consider 1s
– Consider A=1,B=1

• Product of sums – consider 0s
– Consider A=0,B=0

Truth Tables to Logic Equations

).().( BABAX +=

)).(( BABAX ++=
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Convert the following equation which is in the form of 
Product-of-sums into the form of Sum-of-products

Your Turn: Exercise1

))()()(()( CADBADCBACBAABCDf ++++++++=
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Answer: Exercise1
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0 . 0 = 0 

1 + 1 = 1 

0 + 0 = 0 

1 . 1 = 1 

1 . 0 = 0 . 1 = 0 

1 + 0 = 0 + 1 = 1 

Boolean Postulates
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Commutative Law
A + B = B + A

A B  = B A

Associate Law
(A + B) + C = A + (B + C)

(A B) C  = A (B C)

Laws of Boolean Algebra
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Distributive Law
A (B + C) = A B + A C

A + (BC)  = (A + B) (A + C)

Identity Law
A + A = A

A . A  = A 

Laws of Boolean Algebra
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Redundancy Law
A +  AB  =  A

A (A + B)  =  A

Demorgan’s Theorem

.

Laws of Boolean Algebra
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Laws of Boolean Algebra
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Laws of Boolean Algebra
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.

Laws of Boolean Algebra
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A Boolean function can be realised in either SOP or 
POS form

At this point, it would seem that the choice would 
depend on whether the truth table contains more 1s 
and 0s for the output function

The SOP has one term for each 1, and the POS has 
one term for each 0

Implementation of Boolean Functions
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However, there are other considerations:

It is generally possible to derive a simpler Boolean 
expression from truth table than either SOP or 
POS

It may be preferable to implement the function with 
a single gate type (NAND or NOR)

Implementation of Boolean Functions
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The significance of this is that, with a simpler 
Boolean expression, fewer gates will be needed to 
implement the function

Methods that can be used to achieve simplification 
are:

Algebraic Simplification

Karnaugh Maps

Implementation of Boolean Functions
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Simplify the following equation using Boolean 
algebra laws

Your Turn: Algebraic Simplification

))(()( CBACBAABCf +++=
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Answer: Algebraic Simplification

CBAABCf

CCBCBCBCBAABCf

CCBCACBBBACBAAAABCf

CBACBAABCf
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For purposes of simplification, the Karnaugh map is a 
convenient way of representing a Boolean function of 
a small number (up to 4 to 6) of variables

The map is an array of 2n squares, representing the 
possible combinations of values of n binary variables

Karnaugh Maps
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The map can be used to represent any Boolean 
function in the following way:

Each square corresponds to a unique product in the 
sum-of-products form.

With a 1 value corresponding to the variable and a 0
value corresponding to the NOT of that variable

Karnaugh Maps
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0 1

0 0 1

1 1 1

AB

Karnaugh Maps: 2 Values

ABBABAX ++= ..
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The AB corresponds to the fourth square in the 
Figure

For each such production in the function, 1 is 
placed in the corresponding square

11
00       01        11       10

AB

F = AB + AB

Karnaugh Maps: 2 Values
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00 01 11 10

0 1 1 0 0

1 0 0 1 1

AB
C

Karnaugh Maps: 3 Values

CBACBACBACBAX ........ +++=
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00 01 11 10

00 1 0 1 1

01 0 1 1 0

11 0 1 1 0

10 0 1 0 1

AB
CD

Karnaugh Maps: 4 Values

DCBADCBADCBADCBADCBADCBADCBADCBAX ........................ +++++++=
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Simplify the following Karnaugh Map using Boolean 
equations (Write your answers in both SOPSOP and POS)

00 01 11 10

0 0 1 0 0

1 1 1 0 1

ABAB
CC

Karnaugh Maps: Exercise 1
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00 01 11 10

0 0 1 0 0

1 1 1 0 1

ABAB
CC

Karnaugh Maps: Answer

)..()..()..()..( CBACBACBACBA +++ CBBA +

)).().().(( CBACBACBACBA ++++++++ )).(( BACB ++
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Simplify the following Karnaugh Map using Boolean 
equations (Write your answers in both SOPSOP and POSPOS)

00 01 11 10

00 1 0 0 1

01 0 1 1 0

11 0 0 1 0

10 1 0 0 1

ABAB
CDCD

Karnaugh Maps: Exercise 2
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00 01 11 10

00 1 0 0 1

01 0 1 1 0

11 0 0 1 0

10 1 0 0 1

ABAB
CDCD

Karnaugh Maps: Answer

)()()()()()()( DCBADCBAABCDDCABDCBADCBADCBA ++++++

ABDDCBDB ++
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00 01 11 10

00 1 0 0 1

01 0 1 1 0

11 0 0 1 0

10 1 0 0 1

ABAB
CDCD

Karnaugh Maps: Answer

)(

).).().().((

).).().().((

DCBA

DCBADCBADCBADCBA

DCBADCBADCBADCBA
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C

A

D

B

The labeling used in figure emphasizes the relationship 
between variables and the rows and columns of the map

The two rows embraced by 
the symbol A are those in 
which the variable A has the 
value 1; the rows not 
embraced by the symbol A
are those in which A is 0

Simplified Labeling of Karnaugh Maps
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Once the map of a function is created, we can often write 
a simple algebraic expression for it by noting the 
arrangement of the 1s on the map

The principle is as follows:

Any two squares that are adjacent differ in only one of 
the variables

If two adjacent squares both have an entry of 1, then 
the corresponding product terms differ in only one 
variable
In such a case, the two terms can be merged by 
eliminating that variable

Simplified Labeling of Karnaugh Maps
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1 1

CD

AB

For example, in following FIGURE, the two adjacent 
squares correspond to the two terms ABCD and ABCD

The function expressed is 
ABCD + ABCD = ABD

Simplified Labeling of Karnaugh Maps



35© 2009, University of Colombo School of Computing

This process can be extended in several ways:
First, the concept of adjacent can be extended to 
include wrapping around the edge of the map

Thus, the top square of a column is adjacent to 
the bottom square, and the leftmost square of a 
row is adjacent to the rightmost square

Second, we can group not just 2 squares but 2n

adjacent squares, that is, 4, 8, etc

Simplified Labeling of Karnaugh Maps
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1

1

CD

AB

Your turn: Karnaugh Maps
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1

1

CD

AB BCD

Answer: Karnaugh Maps
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11

CD

AB

Your turn: Karnaugh Maps
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11

CD

AB ABD

Answer: Karnaugh Maps
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11 1 1

CD

AB

Your turn: Karnaugh Maps
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11 1 1

CD

AB AB

Answer: Karnaugh Maps
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11

1 1

CD

AB

Your turn: Karnaugh Maps
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11

1 1

CD

AB BC

Answer: Karnaugh Maps
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1

11 1 1

1 1 1

CD

AB

Your turn: Karnaugh Maps
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1

11 1 1

1 1 1

CD

AB A

Answer: Karnaugh Maps
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11

11

1

11

1

CD

AB

Your turn: Karnaugh Maps
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11

11

1

11

1

CD

AB C

Answer: Karnaugh Maps
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In attempting to simplify, first look for the largest 
grouping possible:

When you are circling groups, you are allowed to 
use the same 1 more than once
If any isolated 1s remain after the groupings, then 
each of these is circled as a group of 1s

Finally, before going from the map to a simplified 
Boolean expression, any group of 1s that is 
completely overlapped by other groups can be 
eliminated

Simplified Labeling of Karnaugh Maps
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1

11
00       01        11       10

BC

0

1
A

F = AB + BC 1

11

1

00       01        11       10

CD

00

01

11

10

AB

F = BCD +ACD 

Karnaugh Maps: Overlapping Groups
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1111

1011

1

00 0 0

0 0 0

CD

AB

Your turn: Karnaugh Maps
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1111

1011

1

00 0 0

0 0 0

CD

AB

F = AC + AB + BCD

F = (A+C).(A+B).(B+C+D)

Answer: Karnaugh Maps
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Drawing a Circuit
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B+AC

Drawing a Circuit
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B+AC

Drawing a Circuit
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Logic Operators
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Logic Operations

Basic logic operators and logic gates

Boolean algebra 

Combinational Circuits

Basic circuit design
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Basic Logic Operators and Logic Gates

AND

OR 

NOT

XOR (Exclusive OR)

NOR

NAND

XNOR
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A B

0 0

1 1

Buffer
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. Operator
^ Operator
A . B = A ^ B

A B A . B

0 0 0

0 1 0

1 0 0

1 1 1

AND Operation
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+ Operator
v Operator
A + B = A v B

A B A + B

0 0 0

0 1 1

1 0 1

1 1 1

OR Operation
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~ Operator
¬ Operator A A’

0 1

1 0

NOT Operation

'~ AAAA ==¬=
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Operator

A B

0 0 0

0 1 1

1 0 1

1 1 0

XOR Operation

BA⊕
BA⊕
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A B

0 0 1

0 1 1

1 0 1

1 1 0

NAND Operation

)'.().( BABA = ).( BA
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A B

0 0 1

0 1 0

1 0 0

1 1 0

NOR Operation

)'()( BABA +=+ )( BA+
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A B

0 0 1

0 1 0

1 0 0

1 1 1

XNOR Operation

)( BA⊕ )( BA⊕
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In addition to the basic gates, gates with 3,4, or 
more inputs can be used

E.g. x + y + z can be implemented with a single 
OR gate with 3 inputs

Drawing Logic Gates
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Drawing Logic Gates

CBAX )( +=
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Drawing Logic Gates

DCBAX ++= ).(
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Drawing Logic Gates

).().( CABAX +=
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Drawing Logic Gates

CDCBAX ).).(( ++=
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Reducing the number of inputs

The number of inputs to a gate can be reduced by 
connecting two (or more) inputs together

The diagram shows a 3-input AND gate operating 
as a 2-input AND gate

Reducing Logic Gates
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Reducing the number of inputs

Reducing a NOT gate from a NAND or NOR gate

The diagram shows this for a 2-input NAND gate

Reducing Logic Gates
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Typically, not all gate types are used in 
implementation

Design and fabrication are simpler if only one or 
two types of gates are used

Therefore, it is important to identify functionally 
complete sets of gates

This means that any Boolean function can be 
implemented using only the gates in the set

Logic Gates
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The following are functionally complete sets:

AND, OR, NOT

AND, NOT

OR, NOT

NAND

NOR

Logic Gates
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AND, OR, and NOT gates constitute a functionally 
complete set, since they represent the 3 operations of 
Boolean algebra

For the AND and NOT gates to form a functionally 
complete set, there must be a way to synthesize the OR
operation from the AND and NOT operations

A + B  =  A . B
A OR B =  NOT( ( NOT A) AND ( NOT B) )

Logic Gates
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Similarly, the OR and NOT operations are functionally 
complete because they can be synthesize the AND
operation

A . B  =  A + B
A AND B =  NOT( ( NOT A) OR ( NOT B) )

Logic Gates
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The AND, OR and NOT functions can be 
implemented solely with NAND gates, and the same 
thing for NOR gates.

For this reason, digital circuits can be, and frequently 
are, implemented solely with NAND gates or solely 
with NOR gates

Logic Gates
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The diagram shows how the NOT function can be 
implemented solely with NAND gate

AA AA

Logic Gates
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The diagram shows how the AND function can be 
implemented solely with NAND gate

AA A A .. BB

BB
A

A . BA . B

Logic Gates
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The diagram shows how the OR function can be 
implemented solely with NAND gate

AA
AA

BB
BB

A + BA + B

Logic Gates
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Gate Equivalent in NAND gates

NOT

AND

OR

NOR

Logic Gates
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Draw a diagram that shows how the NOT function 
can be implemented solely with NOR gate

Your turn
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The diagram shows how the NOT function can be 
implemented solely with NOR gate

AA AA

Logic Gates
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Draw a diagram that shows how the OR function 
can be implemented solely with NOR gate

Your turn
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The diagram shows how the OR function can be 
implemented solely with NOR gate

AA A + BA + B

BB

A + BA + B

Logic Gates
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Draw a diagram that shows how the AND function 
can be implemented solely with NOR gate

Your turn
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The diagram shows how the AND function can be 
implemented solely with NOR gate

AA
AA

BB
BB

A A . . BB

Logic Gates
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Substituting Gates in an Logic System
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Substituting Gates in an Logic System
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Substituting Gates in an Logic System



91© 2009, University of Colombo School of Computing

Combinational Circuits
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Combinational Logic

Also called combinatorial logic

A type of logic circuit whose output is a function of 
the present input only
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Half Adder

Finds the sum of two bitsFinds the sum of two bits

The sum can be found The sum can be found 
using the XOR operation using the XOR operation 
and the carry using the and the carry using the 
AND operationAND operation
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Full Adder
We can change our half adder into to a full adder by 
including gates for processing the carry bit
The truth table for a full adder is:
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Converting a Half Adder into a Full AdderConverting a Half Adder into a Full Adder
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Ripple-carry Adder (I)

Just as we combined half adders to make a full adder, Just as we combined half adders to make a full adder, 
full adders can be connected in seriesfull adders can be connected in series

The carry bit “ripples” from one adder to the next; 
hence, this configuration is called a ripple-carry adder

O0O1O15
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Ripple-carry Adder (II)

1/2

Digits of
first number

Digits of
second number

1/2

1/2

1/2

1/2

1/2

1/2

Carry

Sum
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Adder

++

Adders (and other Adders (and other 
arithmetic circuits) arithmetic circuits) 
are usually drawn are usually drawn 
like this in block like this in block 

diagramsdiagrams

A3A3--A0A0 B3B3--B0B0

out3out3--out0out0

inputsinputs

outputoutput
collections of parallel, collections of parallel, 

related wires like this are related wires like this are 
known as known as busesbuses; they carry ; they carry 
multimulti--bit values between bit values between 

componentscomponents
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Decoder

Selects a memory location according a binary value 
placed on the address lines of a memory bus

Decoders with n inputs can select any of 2n locations 
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2-to-4 Decoder

If x = 0 and y = 1, 
which output line 
is enabled?



101© 2009, University of Colombo School of Computing

Multiplexer
A multiplexer does the opposite of a decoder

Selects a single output from several inputs
The particular input chosen for output is determined 
by the value of the multiplexer’s control lines

To select among n inputs, log2n control lines are 
needed 
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4-to-1 Multiplexer

If S0 = 1 and S1 = 0, 
which input is 
selected as output?
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Arithmetic

• Computers need to do more than just addition
– arithmetic: + – * / %

– logic: & | ~ << >>

• Need a circuit that can select operation to perform
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Arithmetic Logic Unit (ALU)

++ ** && <<<< . . .. . .

MUXMUX

op op 
00

op op 
11

op op 
22

op op 
33

opop

outout

AA BB

MultiplexerMultiplexer: a : a 
combinatorial combinatorial 
circuit which circuit which 

selects exactly selects exactly 
one inputone input

op selects operation:op selects operation:
0 = add, 1 = multiply, ...0 = add, 1 = multiply, ...

more more 
operations operations 

herehere

00 11 22 33 ....
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Arithmetic Logic Unit (ALU)

++ ** && <<<< . . .. . .

MUXMUX

op op 
00

op op 
11

op op 
22

op op 
33

op = 3op = 3

out = 60out = 60

A = 15A = 15 B = 2B = 2

other results also other results also 
computed but computed but 

ignored by ignored by 
multiplexermultiplexer

more more 
operations operations 

herehere

for for 
example: example: 
compute compute 
15 << 215 << 2

00 11 22 33 ....
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Sequential Logic Sequential Logic –– MemoryMemory
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Sequential Logic Circuits
Combinational logic circuits are perfect for situations 
which require the immediate application of a Boolean 
function to a set of inputs 

But, here are times when we need a circuit to change 
its value with consideration to its current state as well 
as its inputs

These circuits have to “remember” their current 
state

Sequential logic circuits provide this functionality
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Sequencing Events
Sequential logic circuits require a means by which 
events can be sequenced 

State changes are controlled by clocks
• A “clock” is a special circuit that sends electrical 

pulses through a circuit

Clocks produce electrical waveforms such as this one

State changes occur in sequential circuits only when 
the clock ticks 



109© 2009, University of Colombo School of Computing

Feedback in Sequential Logic Circuits
Sequential circuits rely on feedback to retain their 
state values
Feedback in digital circuits occurs when an output is 
looped back to the input

Example,

If Q is 0 it will always be 0, if it is 1, it will always 
be 1
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SR Flip-flop (Set-Reset) (I)

• The behavior of an SR flip-
flop is described by a 
characteristic table
– Q(t) output at time t

– Q(t+1) output after the 
next clock pulse
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SR Flip-flop: Block Diagram

SS QQ

RR

FlipFlip--flops are often flops are often 
drawn like this in drawn like this in 
block diagramsblock diagrams

S and R S and R 
inputinput

CK is read/write (CK is read/write (““clockclock””
because this input is because this input is 

connected to the computerconnected to the computer’’s s 
processor clock)processor clock)

CKCK

QQ

Q and     = Q and     = 
outputoutput

Q Q 
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SR Flip-flop (II)

The SR flip-flop has three inputs: S, R and Q(t)
When both S and R are 1, the SR flip-flop is unstable
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JK Flip-flop (Jack Kilby)
Modified version of the SR flip-flop to provide a stable 
state when both inputs are 1
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JK Flip-flop: Binary Counter
The low-order bit is 
complemented at each 
clock pulse
Whenever it changes from 
1 to 0, the next bit is 
complemented, and so on 
through the other flip-flops
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D Flip-flop (Data)

Fundamental circuit of computer memory

Used to store 1 bit

Can be implemented with gates

Not combinatorial logic

because current output may depend on previous 
state

Example of sequential logic

current output depends on inputs and prior output
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D Flip-flop

read/writeread/write

data indata in

data outdata out

read/write control: read/write control: 
0 = read, 1 = write0 = read, 1 = write

NOR gate: OR gate NOR gate: OR gate 
followed by NOT gatefollowed by NOT gate
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D Flip-flop: Writing

read/write = 1 read/write = 1 
(write)(write)

data in = 1data in = 1

data out = 1data out = 1

11

11
11

00
00

11

11
00

11
00

11

when read/write = 1, when read/write = 1, 
data out = data indata out = data in

Try changing data in to 0 Try changing data in to 0 
and watch data outand watch data out
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D Flip-flop: Reading

read/write = 0 read/write = 0 
(read)(read)

data in = ?data in = ?

data out = 1data out = 1

??

??
00

??
00

00

00

00

11
00

11

when read/write = 0, no signals when read/write = 0, no signals 
in box can change in box can change ––-- data out data out 

holds value regardless of data inholds value regardless of data in
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D Flip-flop: Block Diagram

DD QQ

CKCK

Q = data Q = data 
outout

D = data D = data 
inin

CK is read/write (CK is read/write (““clockclock””
because this input is often because this input is often 

connected to the computerconnected to the computer’’s s 
processor clock)processor clock)
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D Flip-flop: 4-bit Register

A register stores data 
inside the CPU
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Memory

• Memory can store many bits independently

– register banks contain many flip-flops

• Need to identify which bit (flip-flop) to read or write

• Give each flip-flop a unique number (address)
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Memory: Circuit Diagram
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Memory: Writing
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Memory: Reading
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Memory: 4-words, 3 bits/word
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Summary (I)
Computers are implementations of Boolean logic

Boolean functions are completely described 
by Truth Tables

Logic gates are small circuits that implement Boolean 
operators

The basic gates are AND, OR and NOT

The “universal gates” are NOR and NAND
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Summary (II)
Computer circuits consist of combinational logic 
circuits and sequential logic circuits

Combinational circuits produce outputs (almost) 
immediately when their inputs change

Sequential circuits have internal states as well as 
combinations of input and output logic

The outputs may also depend on the states left behind 
by previous inputs

Sequential circuits require clocks to control their 
changes of state

The basic sequential circuit unit is the flip-flop
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Thank You


